CS 267
Tricks with Trees

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr16

Outline
° A log n lower bound to compute any function in parallel
° Reduction and broadcast in O(log n) time
° Parallel prefix (scan) in O(log n) time
° Adding two n-bit integers in O(log n) time
° Multiplying n-by-n matrices in O(log n) time
° Inverting n-by-n triangular matrices in O(log^2 n) time
° Inverting n-by-n dense matrices in O(log^2 n) time
° Evaluating arbitrary expressions in O(log n) time
° Evaluating recurrences in O(log n) time
° “2D parallel prefix”, for image segmentation (Bryan Catanzaro, Kurt Keutzer)
° Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
° Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
° Solving n-by-n tridiagonal matrices in O(log n) time
° Traversing linked lists
° Computing minimal spanning trees
° Computing convex hulls of point sets...
A log n lower bound to compute any function of n variables
° Assume we can only use binary operations, one per time unit
° After 1 time unit, an output can only depend on two inputs
° Use induction to show that after k time units, an output can only depend on 2^k inputs
° After $\log_2 n$ time units, an output depends on at most n inputs
° A binary tree performs such a computation

Parallel Prefix, or Scan
° If “+” is an associative operator, and x[0],…,x[p-1] are input data then parallel prefix operation computes
 $$y[j] = x[0] + x[1] + \cdots + x[j] \quad \text{for} \quad j=0,1,\ldots,p-1$$
° Notation: $j:k$ means $x[j]+x[j+1]+\ldots+x[k]$, blue is final value

Mapping Parallel Prefix onto a Tree - Details
° Up-the-tree phase (from leaves to root)
 1) Get values L and R from left and right children
 2) Save L in a local register Lsave
 3) Pass sum L+R to parent
° By induction, Lsave = sum of all leaves in left subtree
° Down the tree phase (from root to leaves)
 1) Get value S from parent (the root gets 0)
 2) Send S to the left child
 3) Send S + Lsave to the right child
° By induction, S = sum of all leaves to left of vertex receiving S
E.g., Fibonacci via Matrix Multiply Prefix

\[
F_{n+1} = F_n + F_{n-1}
\]

\[
\begin{pmatrix}
F_{n+1} \\
F_n
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
\]

Can compute all \(F_n \) by matmul_prefix on

\[
\begin{pmatrix}
0 & 1 \\
1 & 1 \\
1 & 0 \\
1 & 1
\end{pmatrix}
\]

then select the upper left entry

Adding two n-bit integers in \(O(\log n) \) time

* Let \(a = a[n-1]a[n-2]\ldots a[0] \) and \(b = b[n-1]b[n-2]\ldots b[0] \) be two n-bit binary numbers

* We want their sum \(s = a+b = s[n]s[n-1]\ldots s[0] \)

\[
c[i] = 0 \quad \text{rightmost carry bit for } i = 0 \text{ to } n-1
\]

\[
c[j] = (a[j] \text{ xor } b[j]) \text{ or } (a[j] \text{ and } b[j]) \quad \text{next carry bit}
\]

* Challenge: compute all \(c[i] \) in \(O(\log n) \) time via parallel prefix

\[
\begin{pmatrix}
c[-1] \\
c[0] \\
c[1] \\
c[n-1]
\end{pmatrix}
= \begin{pmatrix}
0 \\
1 \\
1 \\
1
\end{pmatrix} \quad \text{2-by-2 Boolean matrix multiplication (associative)}
\]

\[
\begin{pmatrix}
p[i] \\
g[i]
\end{pmatrix} = \begin{pmatrix}
c[i] \\
c[i-1]
\end{pmatrix} \quad \text{evaluate each } P[i] = C[i] \text{ * } C[i-1] \ldots \text{ * } C[0] \text{ by parallel prefix}
\]

* Used in all computers to implement addition - Carry look-ahead

Other applications of scan = parallel prefix

* There are many applications of scans, some more obvious than others
 * add multi-precision numbers (represented as array of numbers)
 * evaluate recurrences, expressions
 * solve tridiagonal systems (but numerically unstable!)
 * implement bucket sort and radix sort
 * to dynamically allocate processors
 * to search for regular expression (e.g., grep)
 * many others…

* Names: +\(\backslash \) (APL), cumsum (Matlab), MPI_SCAN

* Note: \(2n \) operations used when only \(n-1 \) needed

Multiplying n-by-n matrices in \(O(\log n) \) time

* For all \(1 \leq i, j, k \leq n \)

\[
P(i,j,k) = A(i,k) * B(k,j)
\]

* cost \(= \) 1 time unit, using \(n^2 \) processors

* For all \(1 \leq i, j \leq n \)

\[
C(i,j) = \sum_{k=1}^{n} P(i,j,k)
\]

* cost \(= O(\log n) \) time, using \(n^2 \) trees with \(n^3 / 2 \) processors
Inverting triangular n-by-n matrices in $O(\log^2 n)$ time

- Fact: \[
\begin{pmatrix} A & 0 \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} & 0 \\ -BA^{-1}C & B^{-1} \end{pmatrix}
\]
- Function Tri_Inv(T)

 ... assume $n = \text{dim}(T) = 2^m$ for simplicity

 \[
 \text{time}(\text{Tri}_\text{Inv}(n)) = \text{time}(\text{Tri}_\text{Inv}(n/2)) + O(\log(n))
 \]

 • Change variable to $m = \log n$ to get $\text{time}(\text{Tri}_\text{Inv}(n)) = O(\log^2 n)$

A \quad 0

C \quad B

\begin{pmatrix} A & 0 \\ C & B \end{pmatrix}^{-1} = \begin{pmatrix} A & 0 \\ -BA^{-1}C & B^{-1} \end{pmatrix}

If T is 1-by-1

return $1/T$

else

... Write $T = \begin{pmatrix} A & 0 \\ C & B \end{pmatrix}$

In parallel do {

 invA = Tri_Inv(A)

 invB = Tri_Inv(B)
}

... implicitly uses a tree

newC = -$ invB \times C \times invA$

Return \begin{pmatrix} invA & 0 \\ newC & invB \end{pmatrix}

Inverting Dense n-by-n matrices in $O(\log n)$ time

- Lemma 1: Cayley-Hamilton Theorem

 • expression for A^{-1} via characteristic polynomial in A

- Lemma 2: Newton's Identities

 • Triangular system of equations for coefficients of characteristic polynomial, where matrix entries = s_k

- Lemma 3: $s_k = \text{trace}(A^k) = \sum A^k_{i,i}$

 • Csanky's Algorithm (1976)

1) Compute the powers $A, A^2, A^3, ..., A^{n-1}$ by parallel prefix

 cost = $O(\log^2 n)$

2) Compute the traces $s_k = \text{trace}(A^k)$

 cost = $O(\log n)$

3) Solve Newton identities for coefficients of characteristic polynomial

 cost = $O(\log^2 n)$

4) Evaluate A^{-1} using Cayley-Hamilton Theorem

 cost = $O(\log n)$

\(\square\) Completely numerically unstable

Evaluating arbitrary expressions

- Let E be an arbitrary expression formed from $+, -, \times, /, \text{parentheses, and } n$ variables, where each appearance of each variable is counted separately

- Can think of E as arbitrary expression tree with n leaves (the variables) and internal nodes labeled by $+$, $-$, \times and $/$

 • Theorem (Brent): E can be evaluated in $O(\log n)$ time, if we reorganize it using laws of commutativity, associativity and distributivity

 • Sketch of (modern) proof: evaluate expression tree E greedily by repeatedly

 - collapsing all leaves into their parents at each time step
 - evaluating all "chains" in E with parallel prefix

Evaluating recurrences

- Let $x_i = f(x_{i-1})$, f a rational function, x_0 given

- How fast can we compute x_n?

 • Theorem (Kung): Suppose degree(f_i) = d for all i

 • If $d=1$, x_n can be evaluated in $O(\log n)$ using parallel prefix

 • If $d>1$, evaluating x_n takes $\Omega(n)$ time, i.e. no speedup is possible

 • Sketch of proof when $d=1$

 $x_i = f(x_{i-1}) = (a_i \cdot x_{i-1} + b_i) / (c_i \cdot x_{i-1} + d_i)$ can be written as

 \[
 \begin{pmatrix} \text{num} \\ \text{den} \end{pmatrix} = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} \begin{pmatrix} \text{num}_{i-1} \\ \text{den}_{i-1} \end{pmatrix} = \begin{pmatrix} \text{num}_i \\ \text{den}_i \end{pmatrix} = \begin{pmatrix} M_0 & M_1 \\ \cdots & \cdots \end{pmatrix} \begin{pmatrix} \text{num}_0 \\ \text{den}_0 \end{pmatrix}
 \]

 Can use parallel prefix with 2-by-2 matrix multiplication

 • Sketch of proof when $d>1$

 - degree(x_i) = d^i

 - After i parallel steps, degree(anything) $\geq 2^i$

 - Computing x_i take $\Omega(i)$ steps
Image Segmentation (1/4)

* Contours are subjective – they depend on perspective
 - Surprise: Humans agree (somewhat)
* Goal: generate contours automatically
 - Use them to break images into separate segments (subimages)
 - J. Malik’s group has leading algorithm
* Enable automatic image search and retrieval (“Find all the pictures with Fred”)

Image Segmentation (2/4)

* Think of image as matrix $A(i,j)$ of pixels
 - Each pixel has separate R(ed), G(reen), B(lue) intensities
* Bottleneck (so far) of Malik’s algorithm is to compute other matrices indicating whether pixel (i,j) likely to be on contour
 - Ex: $C(i,j)$ = average *R intensity* of pixels in rectangle above (i,j) – average *R intensity* of pixels in rectangle below (i,j)
 - $C(i,j)$ large for pixel (i,j) marked with \mathbb{U}, so (i,j) likely to be on contour

* Algorithm eventually computes eigenvectors of sparse matrix with entries computed from matrices like C
 - Analogous to graph partitioning in later lecture

Image Segmentation (3/4)

* Bottleneck: Given $A(i,j)$, compute $C(i,j)$ where
 - $S_a(i,j)$ = sum of $A(i,j)$ for entries in $k \times (2k+1)$ rectangle above $A(i,j)$
 - $S_b(i,j)$ = similar sum of rectangle below $A(i,j)$
 - $C(i,j)$ = $S_a(i,j) - S_b(i,j)$
* Approach (Bryan Catanzaro)
 - Compute $S(i,j) = \sum A(r,s)$ for $r \leq i$ and $s \leq j$
 - Then sum of $A(i,j)$ over any rectangle $(l_{low} \leq j \leq l_{high}, j_{low} \leq i \leq j_{high})$ is $S(l_{high}, J_{high}) - S(l_{high}, J_{low}) - S(l_{low}, J_{low}) + S(l_{low}, J_{high})$

Image Segmentation (4/4)

* New Bottleneck: Given $A(i,j)$, compute $S(i,j)$ where
 - $S(i,j) = \sum A(r,s)$ for $r \leq i$ and $s \leq j$
 - “2 dimensional parallel prefix”
 - Do parallel prefix independently on each row of $A(i,j)$:
 - $S_{row}(i,j) = \sum A(r,s)$ for $s \leq j$
 - Do parallel prefix independently on each column of S_{row}:
 - $S(i,j) = \sum S_{row}(r,j)$ for $r \leq i$ = $\sum A(r,s)$ for $s \leq j$ and $r \leq i$
Sparse-Matrix-Vector-Multiply (SpMV) \(y = A \cdot x \)

Using Segmented Scan (SegScan)

- Segscan computes prefix sums of arbitrary segments
 - Segscan (\([3, 1, 4, 5, 6, 1, 2, 3]\))
 - \([3, 4, 8, 5, 6, 7, 9, 3]\)
- Use CSR format of Sparse Matrix A, store x densely
- Create array P of all nonzero \(A(i,j) \cdot x(j) = Val(k) \cdot x(Col_Ind(k))\)
- Create array S showing where segments (rows) start
- Compute SegScan(P, S) =
- Extract \(A \cdot x = [14, 61, 24]\)

Summary of tree algorithms

- Lots of problems can be done quickly - in theory - using trees
- Some algorithms are widely used
 - broadcasts, reductions, parallel prefix
 - carry look ahead addition
- Some are of theoretical interest only
 - Csanky’s method for matrix inversion
 - Solving tridiagonal linear systems (without pivoting)
 - Both numerically unstable
 - Csanky needs too many processors
- Embedded in various systems
 - MPI, Split-C, Titanium, NESL, other languages
 - CM-5 hardware control network

Page layout in a browser

- Applying layout rules to html description of a webpage is a bottleneck, scan can help
- Simplest example
 - Given widths \([x_1, x_2, \ldots, x_n]\) of items to display on page, where should each item go?
 - Item j starts at \(x_1 + x_2 + \ldots + x_{j-1}\)
- Real examples have complicated constraints
 - Defined by general trees, since in html each object to display can be composed of other objects
 - To get location of each object, need to do preorder traversal of tree, "adding up" constraints of previous objects
 - Scan can do preorder traversal of any tree in parallel
 - Not just binary trees
- Ras Bodik, Leo Meyerovich