Recap of Last Lecture

• 4 kinds of simulations
 • Discrete Event Systems
 • Particle Systems
 • Ordinary Differential Equations (ODEs)
 • Partial Differential Equations (PDEs) (today)

• Common problems:
 • Load balancing
 • May be due to lack of parallelism or poor work distribution
 • Statically, divide grid (or graph) into blocks
 • Dynamically, if load changes significantly during run
 • Locality
 • Partition into large chunks with low surface-to-volume ratio
 • To minimize communication
 • Distributed particles according to location, but use irregular spatial decomposition (e.g., quad tree) for load balance
 • Constant tension between these two
 • Particle-Mesh method: can’t balance particles (moving), balance mesh (fixed) and keep particles near mesh points without communication

Continuous Variables, Continuous Parameters

Examples of such systems include:

• Elliptic problems (steady state, global space dependence)
 • Electrostatic or Gravitational Potential: Potential(position)
• Hyperbolic problems (time dependent, local space dependence):
 • Sound waves: Pressure(position,time)
• Parabolic problems (time dependent, global space dependence)
 • Heat flow: Temperature(position, time)
 • Diffusion: Concentration(position, time)

Global vs Local Dependence

• Global means either a lot of communication, or tiny time steps
• Local arises from finite wave speeds: limits communication

Many problems combine features of above

• Fluid flow: Velocity, Pressure, Density(position, time)
• Elasticity: Stress, Strain(position, time)
Example: Deriving the Heat Equation

Consider a simple problem
- A bar of uniform material, insulated except at ends
- Let \(u(x,t) \) be the temperature at position \(x \) at time \(t \)
- Heat travels from \(x-h \) to \(x+h \) at rate proportional to:

\[
\frac{d u(x,t)}{dt} = C \frac{(u(x-h,t)-u(x,t)) - (u(x,t)-u(x+h,t))}{h}
\]

As \(h \to 0 \), we get the heat equation:

\[
\frac{d^2 u(x,t)}{dx^2} = C \frac{u(x-h,t) - 2u(x,t) + u(x+h,t)}{h^2}
\]

Details of the Explicit Method for Heat

\[
\frac{d u(x,t)}{dt} = C \frac{d^2 u(x,t)}{dx^2}
\]

- **Discretize** time and space using explicit approach (forward Euler) to approximate time derivative:

\[
(u(x,t+\delta t) - u(x,t))/\delta t = C \frac{(u(x-h,t)-u(x,t)) - (u(x,t)-u(x+h,t))}{h}
\]

Solve for \(u(x,t+\delta t) \):

\[
u(x,t+\delta t) = u(x,t) + \delta t \frac{C}{h^2} (u(x-h,t) - 2u(x,t) + u(x+h,t))
\]

Explicit Solution of the Heat Equation

- Use "finite differences" with \(u[i,j] \) as the temperature at:
 - time \(t = i \delta t \) \((i=0,1,2,...) \) and position \(x = j \delta \) \((j=0,1,...,N=1/\delta) \)
 - initial conditions on \(u[0,j] \)
 - boundary conditions on \(u[0,i] \) and \(u[N,i] \)

At each timestep \(i = 0,1,2,... \)

For \(j=1 \) to \(N-1 \)

\[
u[j,i+1] = z^j u[j-1,i] + (1-2z) u[j,i] + z^j u[j+1,i]
\]

where \(z = C \delta t / h^2 \)

- This corresponds to:
 - Matrix-vector-multiply by \(T \) (next slide)
 - Combine nearest neighbors on grid

Matrix View of Explicit Method for Heat

\[
u[j,i+1] = z^j u[j-1,i] + (1-2z) u[j,i] + z^j u[j+1,i]
\]

same as:

\[
u[;i+1] = T \cdot u[;i]
\]

where \(T \) is tridiagonal:

\[
T = \begin{pmatrix}
1-2z & z & & & \\
z & 1-2z & z & & \\
& z & 1-2z & z & \\
& & z & 1-2z & \\
& & & & z
\end{pmatrix}
\]

\[
I - z^J I, \quad L = \begin{pmatrix}
2 & -1 & & & \\
1 & 2 & -1 & 0 & \\
0 & 1 & 2 & -1 & \\
0 & 1 & 2 & -1 & 0
\end{pmatrix}
\]

Graph and *3 point stencil*

- \(L \) called Laplacian (in 1D)
- For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal
 - More on the matrix/grid views later
Parallelism in Explicit Method for PDEs
- Sparse matrix vector multiply, via Graph Partitioning
- Partitioning the space (x) into p chunks
 - good load balance (assuming large number of points relative to p)
 - minimize communication (least dependence on data outside chunk)
- Generalizes to
 - multiple dimensions.
 - arbitrary graphs (= arbitrary sparse matrices).
- Explicit approach often used for hyperbolic equations
 - Finite wave speed, so only depend on nearest chunks
- Problem with explicit approach for heat (parabolic):
 - numerical instability.
 - solution blows up eventually if $z = C \delta / h^2 > .5$
 - need to make the time step δ very small when h is small: $\delta < .5h^2 / C$

Implicit Solution of the Heat Equation
\[
\frac{d u(x,t)}{dt} = C \frac{d^2 u(x,t)}{dx^2}
\]
- Discretize time and space using implicit approach (Backward Euler) to approximate time derivative:
 \[
 (u(x,t+\delta) - u(x,t))/\delta = C((u(x+h,t+\delta) - 2u(x,t+\delta) + u(x-h,t+\delta))/h^2

 u(x,t) = u(x,t+\delta) - C\delta/h^2((u(x+h,t+\delta) - 2u(x,t+\delta) + u(x-h,t+\delta)))
 \]
- Let $z = C\delta/h^2$ and change variable t to $i\delta$, x to $j\delta$ and $u(x,t)$ to $u[j,i]$
 \[
 (I + zL) u[:,i+1] = u[:,i]
 \]
- Where I is identity and L is Laplacian as before

Implicit Solution of the Heat Equation
- The previous slide derived Backward Euler
 - $(I + zL) u[:,i+1] = u[:,i]$
- But the Trapezoidal Rule has better numerical properties:
 \[
 (I + (z/2)L) u[:,i+1] = (I - (z/2)L) u[:,i]
 \]
- Again I is the identity matrix and L is:

Explicit Solution of the Heat Equation
- Other problems (elliptic instead of parabolic) yield Poisson’s equation ($Lx = b$ in 1D)
Relation of Poisson to Gravity, Electrostatics

- Poisson equation arises in many problems
- E.g., force on particle at \((x,y,z)\) due to particle at 0 is
 \[-\frac{(x,y,z)}{r^3}, \text{ where } r = \sqrt{x^2 + y^2 + z^2}\]
- Force is also gradient of potential \(V = \frac{1}{r}\)
 \[-(d/dx V, d/dy V, d/dz V) = -\text{grad } V\]
- \(V\) satisfies Poisson’s equation (try working this out!)

\[
d^2V + d^2V + d^2V = 0 \\
dx^2 dy^2 dz^2
\]

2D Implicit Method

- Similar to the 1D case, but the matrix \(L\) is now

\[
\begin{bmatrix}
4 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4 \\
-1 & -1 & -1 \\
-1 & -1 & 4 \\
-1 & -1 & -1 \\
-1 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & 4 & -1
\end{bmatrix}
\]

- \(\text{Graph and “5 point stencil”}\)

- Multiplying by this matrix (as in the explicit case) is simply nearest neighbor computation on 2D grid.
- To solve this system, there are several techniques.

Algorithms for 2D (3D) Poisson Equation (N vars)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Serial</th>
<th>PRAM</th>
<th>Memory</th>
<th>#Procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense LU</td>
<td>(N^2)</td>
<td>N</td>
<td>(N^2)</td>
<td>(N^2)</td>
</tr>
<tr>
<td>Band LU</td>
<td>(N^2 \text{ (N}^{\text{c}})</td>
<td>N</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
</tr>
<tr>
<td>Jacobi</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>N</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>N</td>
</tr>
<tr>
<td>Explicit Inv.</td>
<td>(N^2) (\log N)</td>
<td>N</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>N</td>
</tr>
<tr>
<td>Conj.Gradients</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>(N^2) (\text{ (N}^{\text{c}}) (\log N)</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Red/Black SOR</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>(N^2) (\text{ (N}^{\text{c}})</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sparse LU</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>N</td>
</tr>
<tr>
<td>FFT</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>N</td>
</tr>
<tr>
<td>Multigrid</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>N</td>
</tr>
<tr>
<td>Lower bound</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>(N\log N)</td>
<td>N</td>
</tr>
</tbody>
</table>

All entries in “Big-Oh” sense (constants omitted)

PRAM is an idealized parallel model with zero cost communication

Decision tree to help choose algorithms:

- Dense LU:
 - Gaussian elimination; works on any N-by-N matrix.
- Band LU:
 - Exploits the fact that \(T\) is nonzero only on sqrt(N) diagonals nearest main diagonal.
- Jacobi:
 - Essentially does matrix-vector multiply by \(T\) in inner loop of iterative algorithm.
- Explicit Inverse:
 - Assume we want to solve many systems with \(T\), so we can precompute and store inv(T) “for free”, and just multiply by it (but still expensive).
- Conjugate Gradient:
 - Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of \(T\) that Jacobi does not.
- Explicit inverse:
 - Assume we want to solve many systems with \(T\), so we can precompute and store inv(T) “for free”, and just multiply by it (but still expensive).
- Conjugate Gradient:
 - Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of \(T\) that Jacobi does not.
- Red-Black SOR (successive over-relaxation):
 - Variation of Jacobi that exploits yet different mathematical properties of \(T\). Used in multigrid schemes.
- Sparse LU:
 - Gaussian elimination exploiting particular zero structure of \(T\).
- FFT (Fast Fourier Transform):
 - Works only on matrices very like \(T\).
- Multigrid:
 - Also works on matrices like \(T\), that come from elliptic PDEs.
- Lower Bound:
 - Serial (time to print answer); parallel (time to combine N inputs).
- Details in class notes and www.cs.berkeley.edu/~demmel/ma221.
Mflop/s Versus Run Time in Practice

- Problem: Iterative solver for a convection-diffusion problem; run on a 1024-CPU NCUBE-2.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Flops</th>
<th>CPU Time(s)</th>
<th>Mflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobi</td>
<td>3.82×10^{12}</td>
<td>2124</td>
<td>1800</td>
</tr>
<tr>
<td>Gauss-Seidel</td>
<td>1.21×10^{12}</td>
<td>885</td>
<td>1365</td>
</tr>
<tr>
<td>Multigrid</td>
<td>2.13×10^9</td>
<td>7</td>
<td>318</td>
</tr>
</tbody>
</table>

• Which solver would you select?

Summary of Approaches to Solving PDEs

- As with ODEs, either explicit or implicit approaches are possible
 - Explicit, sparse matrix-vector multiplication
 - Implicit, sparse matrix solve at each step
 - Direct solvers are hard (more on this later)
 - Iterative solves turn into sparse matrix-vector multiplication
 - Graph partitioning
 - Graph and sparse matrix correspondence:
 - Sparse matrix-vector multiplication is nearest neighbor “averaging” on the underlying mesh
 - Not all nearest neighbor computations have the same efficiency
 - Depends on the mesh structure (nonzero structure) and the number of Flops per point.

Comments on practical meshes

- Regular 1D, 2D, 3D meshes
 - Important as building blocks for more complicated meshes

- Practical meshes are often irregular
 - Composite meshes, consisting of multiple “bent” regular meshes joined at edges
 - Unstructured meshes, with arbitrary mesh points and connectivities
 - Adaptive meshes, which change resolution during solution process to put computational effort where needed

Parallelism in Regular meshes

- Computing a Stencil on a regular mesh
 - need to communicate mesh points near boundary to neighboring processors.
 - Often done with ghost regions
 - Surface-to-volume ratio keeps communication down, but
 - Still may be problematic in practice

Implemented using “ghost” regions.
Adds memory overhead
Composite mesh from a mechanical structure

Converting the mesh to a matrix

Example of Matrix Reordering Application

Irregular mesh: NASA Airfoil in 2D (direct solution)
Irregular mesh: Tapered Tube (multigrid)

Example of Promethus meshes

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Source of Unstructured Finite Element Mesh: Vertebra

Study failure modes of trabecular Bone under stress

Source: Mark Adams, PPPL

Methods: \(\mu\)FE modeling (Gordon Bell Prize, 2004)

Mechanical Testing
\(E, \epsilon_y, \sigma_u, \) etc.

Source: Mark Adams, PPPL

Micro-Computed Tomography
\(\mu\)CT @ 22 \(\mu\)m resolution

\(\mu\)FE mesh
2.5 mm cube
44 \(\mu\)m elements

Up to 537M unknowns

Adaptive Mesh Refinement (AMR)

• Adaptive mesh around an explosion
 • Refinement done by estimating errors; refine mesh if too large
 • Parallelism
 • Mostly between “patches,” assigned to processors for load balance
 • May exploit parallelism within a patch
 • Projects:
 • Titanium (http://www.cs.berkeley.edu/projects/titanium)
 • Chombo (P. Colella, LBL), Kelp (S. Baden, UCSD), J. Bell, LBL
Adaptive Mesh

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement)
See: http://www.llnl.gov/CASC/SAMRAI/

Challenges of Irregular Meshes

- How to generate them in the first place
 - Start from geometric description of object
 - Triangle, a 2D mesh partitioner by Jonathan Shewchuk
 - 3D harder
- How to partition them
 - ParMetis, a parallel graph partitioner
- How to design iterative solvers
 - PETSc, a Portable Extensible Toolkit for Scientific Computing
 - Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
 - SuperLU, parallel sparse Gaussian elimination
- These are challenges to do sequentially, more so in parallel

Summary – sources of parallelism and locality

- Current attempts to categorize main “kernels” dominating simulation codes
- “Seven Dwarfs” (P. Colella)
 - Structured grids
 - including locally structured grids, as in AMR
 - Unstructured grids
 - Spectral methods (Fast Fourier Transform)
 - Dense Linear Algebra
 - Sparse Linear Algebra
 - Both explicit (SpMV) and implicit (solving)
 - Particle Methods
 - Monte Carlo/Embarrassing Parallelism/Map Reduce (easy!)

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)