Motivation

• Most applications run at < 10% of the “peak” performance of a system
 • Peak is the maximum the hardware can physically execute
• Much of this performance is lost on a single processor, i.e., the code running on one processor often runs at only 10-20% of the processor peak
• Most of the single processor performance loss is in the memory system
 • Moving data takes much longer than arithmetic and logic

• To understand this, we need to look under the hood of modern processors
 • For today, we will look at only a single “core” processor
 • These issues will exist on processors within any parallel computer

Possible conclusions to draw from today’s lecture

• “Computer architectures are fascinating, and I really want to understand why apparently simple programs can behave in such complex ways!”
• “I want to learn how to design algorithms that run really fast no matter how complicated the underlying computer architecture.”
• “I hope that most of the time I can use fast software that someone else has written and hidden all these details from me so I don’t have to worry about them!”
• All of the above, at different points in time
Outline

• Idealized and actual costs in modern processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication

Idealized Uniprocessor Model

• Processor names bytes, words, etc. in its address space
 • These represent integers, floats, pointers, arrays, etc.
• Operations include
 • Read and write into very fast memory called registers
 • Arithmetic and other logical operations on registers
• Order specified by program
 • Read returns the most recently written data
 • Compiler and architecture translate high level expressions into
 "obvious" lower level instructions

A = B + C ⇒
 Read address(B) to R1
 Read address(C) to R2
 R3 = R1 + R2
 Write R3 to Address(A)
• Hardware executes instructions in order specified by compiler
• Idealized Cost
 • Each operation has roughly the same cost
 (read, write, add, multiply, etc.)

Uniprocessors in the Real World

• Real processors have
 • registers and caches
 • small amounts of fast memory
 • store values of recently used or nearby data
 • different memory ops can have very different costs
 • parallelism
 • multiple "functional units" that can run in parallel
 • different orders, instruction mixes have different costs
 • pipelining
 • a form of parallelism, like an assembly line in a factory
• Why is this your problem?
 • In theory, compilers and hardware "understand" all this
 and can optimize your program; in practice they don’t.
 • They won’t know about a different algorithm that might
 be a much better "match" to the processor

In theory there is no difference between theory and practice.
But in practice there is.
 - Yogi Berra
Outline

• Idealized and actual costs in modern processors
• Memory hierarchies
 • Temporal and spatial locality
 • Basics of caches
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication

Memory Hierarchy

• Most programs have a high degree of locality in their accesses
 • spatial locality: accessing things nearby previous accesses
 • temporal locality: reusing an item that was previously accessed
• Memory hierarchy tries to exploit locality to improve average

Approaches to Handling Memory Latency

• Eliminate memory operations by saving values in small, fast memory (cache) and reusing them
 • need temporal locality in program
• Take advantage of better bandwidth by getting a chunk of memory and saving it in small fast memory (cache) and using whole chunk
 • bandwidth improving faster than latency: 23% vs 7% per year
 • need spatial locality in program
• Take advantage of better bandwidth by allowing processor to issue multiple reads to the memory system at once
 • concurrency in the instruction stream, e.g. load whole array, as in vector processors; or prefetching
• Overlap computation & memory operations
 • prefetching
Cache Basics

- Cache is fast (expensive) memory which keeps copy of data in main memory; it is hidden from software
 - Simplest example: data at memory address xxxx1101 is stored at cache location 1101
- Cache hit: in-cache memory access—cheap
- Cache miss: non-cached memory access—expensive
 - Need to access next, slower level of cache
- Cache line length: # of bytes loaded together in one entry
 - Ex: If either xxxx1100 or xxxx1101 is loaded, both are
- Associativity
 - direct-mapped: only 1 address (line) in a given range in cache
 - Data stored at address xxxx1101 stored at cache location 1101, in 16 word cache
 - n-way: n ≥ 2 lines with different addresses can be stored
 - Up to n ≤ 16 words with addresses xxxx1101 can be stored at cache location 1101 (so cache can store 16n words)

Why Have Multiple Levels of Cache?

- On-chip vs. off-chip
 - On-chip caches are faster, but limited in size
- A large cache has delays
 - Hardware to check longer addresses in cache takes more time
 - Associativity, which gives a more general set of data in cache, also takes more time
- Some examples:
 - Cray T3E eliminated one cache to speed up misses
 - IBM uses a level of cache as a "victim cache" which is cheaper
- There are other levels of the memory hierarchy
 - Register, pages (TLB, virtual memory), ...
 - And it isn’t always a hierarchy

Experimental Study of Memory (Membench)

- Microbenchmark for memory system performance
- for array A of length L from 4KB to 8MB by 2x
 - for stride s from 4 Bytes (1 word) to L/2 by 2x
 - time the following loop (repeat many times and average)
 - for i from 0 to L-1 by s
 - load A[i] from memory (4 Bytes)

Membench: What to Expect

- Consider the average cost per load
 - Plot one line for each array length, time vs. stride
 - Small stride is best: if cache line holds 4 words, at most ¼ miss
 - If array is smaller than a given cache, all those accesses will hit (after the first run, which is negligible for large enough runs)
 - Picture assumes only one level of cache
 - Values have gotten more difficult to measure on modern procs
Memory Hierarchy on a Sun Ultra-2i

- **L1**: 16 KB, 2 cycles (6ns)
- **L2**: 64 byte line
- **L2**: 2 MB, 12 cycles (36ns)

See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

- **Mem**: 396 ns (132 cycles)
- **8 K pages, 32 TLB entries**

Memory Hierarchy on a Power3 (Seaborg)

- **L1**: 32 KB, .5-2 cycles
- **L2**: 8 MB, 128B line, 9 cycles

- **Mem**: 396 ns (132 cycles)

Stanza Triad

- Even smaller benchmark for prefetching
- Derived from STREAM Triad
- **Stanza (L)** is the length of a unit stride run

\[
A[i] = \text{scalar} \times X[i] + Y[i]
\]

for each L element stanza

1) do L triads
2) skip k elements
3) do L triads

Source: Kamil et al, MSP05
Stanza Triad Results

• This graph (x-axis) starts at a cache line size (>=16 Bytes)
• If cache locality was the only thing that mattered, we would expect
 • Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
 • Prefetching gets the next cache line (pipelining) while using the current one
 • This does not “kick in” immediately, so performance depends on L

Lessons

• Actual performance of a simple program can be a complicated function of the architecture
 • Slight changes in the architecture or program change the performance significantly
 • To write fast programs, need to consider architecture
 • True on sequential or parallel processor
 • We would like simple models to help us design efficient algorithms
 • We will illustrate with a common technique for improving cache performance, called blocking or tiling
 • Idea: used divide-and-conquer to define a problem that fits in register/L1-cache/L2-cache

Outline

• Idealized and actual costs in modern processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
 • Hidden from software (sort of)
 • Pipelining
 • SIMD units
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication

What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
wash (30 min) + dry (40 min) + fold (20 min) = 90 min

Latency

6 PM 7 8 9

60

30 40 40 40

20

A

B

C

D

Time

Task Order

• In this example:
 • Sequential execution takes 4 * 90min = 6 hours
 • Pipelined execution takes 30+4*40+20 = 3.5 hours
 • Bandwidth = loads/hour
 • BW = 4/6 l/h w/o pipelining
 • BW = 4/3.5 l/h w pipelining
 • BW <= 1.5 l/h w pipelining, more total loads
 • Pipelining helps bandwidth but not latency (90 min)
 • Bandwidth limited by slowest pipeline stage
 • Potential speedup = Number of pipe stages
Example: 5 Steps of MIPS Datapath

Figure 3.4, Page 134, CA:AQA 2e by Patterson and Hennessy

- Pipelining is also used within arithmetic units
 - A fp multiply may have latency 10 cycles, but throughput of 1/cycle

SIMD: Single Instruction, Multiple Data

- Scalar processing
 - Traditional mode
 - One operation produces one result
- SIMD processing
 - With SSE / SSE2
 - SSE = streaming SIMD extensions
 - One operation produces multiple results

SIMD / SSE2 SIMD on Intel

- SSE2 data types: anything that fits into 16 bytes, e.g.,
 4x floats
 2x doubles
 16x bytes
- Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel
- Challenges:
 - Need to be contiguous in memory and aligned
 - Some instructions to move data around from one part of register to another
 - Similar on GPUs, vector processors (but many more simultaneous operations)

What does this mean to you?

- In addition to SIMD extensions, the processor may have other special instructions
 - Fused Multiply-Add (FMA) instructions: $x = y + c \times z$
 - Is so common some processor execute the multiply/add as a single instruction, at the same rate (bandwidth) as $+$ or \times alone
 - In theory, the compiler understands all of this
 - When compiling, it will rearrange instructions to get a good "schedule" that maximizes pipelining, uses FMAs and SIMD
 - It works with the mix of instructions inside an inner loop or other block of code
- But in practice the compiler may need your help
 - Choose a different compiler, optimization flags, etc.
 - Rearrange your code to make things more obvious
 - Using special functions ("intrinsics") or write in assembly

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation
Outline
• Idealized and actual costs in modern processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication
 • Simple cache model
 • Warm-up: Matrix-vector multiplication
• Naïve vs optimized Matrix-Matrix Multiply
 • Minimizing data movement
 • Beating O(n^3) operations
 • Practical optimizations (continued next time)

Why Matrix Multiplication?
• An important kernel in many problems
 • Appears in many linear algebra algorithms
 • Bottleneck for dense linear algebra, including Top500
 • One of the 7 dwarfs / 13 motifs of parallel computing
 • Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
• Optimization ideas can be used in other problems
• The best case for optimization payoffs
• The most-studied algorithm in high performance computing

What do commercial and CSE applications have in common?
Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

Matrix-multiply, optimized several ways
Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are “1-D”
- Conventions for matrix layout
 - by column, or “column major” (Fortran default): A(i,j) at A+i+j*n
 - by row, or “row major” (C default) A(i,j) at A+i*n+j
 - recursive (later)

- Column major (for now)

![Matrix layout diagram]

Using a Simple Model of Memory to Optimize

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - m = number of memory elements (words) moved between fast and slow memory
 - t_m = time per slow memory operation
 - f = number of arithmetic operations
 - t_f = time per arithmetic operation << t_m
 - q = f / m average number of flops per slow memory access

- Minimum possible time = f * t_f when all data in fast memory
- Actual time
 - f * t_f + m * t_m = f * t_f * (1 + t_m / t_f * 1/q)

- Larger q means time closer to minimum f * t_f
- q = t_f / t_m needed to get at least half of peak speed

Warm up: Matrix-vector multiplication

```plaintext
\{implements y = y + A*x\}
for i = 1:n
  for j = 1:n
    y(i) = y(i) + A(i,j)*x(j)
  end for
end for
```

- m = number of slow memory refs = 3n + n^2
- f = number of arithmetic operations = 2n^2
- q = f / m = 2

- Matrix-vector multiplication limited by slow memory speed

![Matrix-vector multiplication diagram]
Modeling Matrix-Vector Multiplication

- Compute time for nxn = 1000x1000 matrix
- Time
 \[t_f \cdot t_m + f \cdot t_f = f \cdot t_f (1 + t_m/t_f \cdot 1/q) \]
- For \(t_f \) and \(t_m \), using data from R. Vuduc’s PhD (pp 351-3)
 - For \(t_m \) use minimum-memory-latency / words-per-cache-line

<table>
<thead>
<tr>
<th>Machine</th>
<th>Clock MHz</th>
<th>Peak MFlop/s</th>
<th>Mem Lat (Min,Max) cycles</th>
<th>Bytes</th>
<th>(t_m/t_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>333</td>
<td>667</td>
<td>26, 66</td>
<td>16</td>
<td>24.8</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>900</td>
<td>1800</td>
<td>28, 200</td>
<td>32</td>
<td>14.0</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>500</td>
<td>500</td>
<td>25, 60</td>
<td>32</td>
<td>6.3</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>800</td>
<td>800</td>
<td>40, 60</td>
<td>32</td>
<td>10.0</td>
</tr>
<tr>
<td>Power3</td>
<td>375</td>
<td>1500</td>
<td>35, 139</td>
<td>128</td>
<td>8.8</td>
</tr>
<tr>
<td>Power4</td>
<td>1300</td>
<td>5200</td>
<td>60, 10000</td>
<td>128</td>
<td>15.0</td>
</tr>
<tr>
<td>Itanium1</td>
<td>900</td>
<td>3200</td>
<td>36, 85</td>
<td>32</td>
<td>36.0</td>
</tr>
<tr>
<td>Itanium2</td>
<td>900</td>
<td>3600</td>
<td>11, 60</td>
<td>64</td>
<td>5.5</td>
</tr>
</tbody>
</table>

Simplifying Assumptions

- What simplifying assumptions did we make in this analysis?
 - Ignored parallelism in processor between memory and arithmetic within the processor
 - Sometimes drop arithmetic term in this type of analysis
 - Assumed fast memory was large enough to hold three vectors
 - Reasonable if we are talking about any level of cache
 - Not if we are talking about registers (~32 words)
 - Assumed the cost of a fast memory access is 0
 - Reasonable if we are talking about registers
 - Not necessarily if we are talking about cache (1-2 cycles for L1)
 - Memory latency is constant
 - Could simplify even further by ignoring memory operations in X and Y vectors

Validating the Model

- How well does the model predict actual performance?
 - Actual DGEMV: Most highly optimized code for the platform
 - Model sufficient to compare across machines
 - But under-predicting on most recent ones due to latency estimate

<table>
<thead>
<tr>
<th>Machine</th>
<th>Predicted MFLOP (ignoring x,y)</th>
<th>Pred DGEMV/ MFlop/s (with x,y)</th>
<th>Actual DGEMV (MFLOPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>1000</td>
<td>1200</td>
<td>1400</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>2000</td>
<td>2400</td>
<td>2800</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>3000</td>
<td>3600</td>
<td>4200</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>4000</td>
<td>4800</td>
<td>5600</td>
</tr>
<tr>
<td>Power3</td>
<td>5000</td>
<td>6000</td>
<td>7200</td>
</tr>
<tr>
<td>Power4</td>
<td>7000</td>
<td>8400</td>
<td>10200</td>
</tr>
<tr>
<td>Itanium1</td>
<td>9000</td>
<td>10800</td>
<td>12600</td>
</tr>
<tr>
<td>Itanium2</td>
<td>11000</td>
<td>13200</td>
<td>15600</td>
</tr>
</tbody>
</table>

Naïve Matrix Multiply

\[
\begin{align*}
\text{C(i,j)} &= \text{C(i,j)} + \text{A(i,k)} \cdot \text{B(k,j)} \\
\end{align*}
\]

Algorithm has \(2^n^3 \) Flops and operates on \(3n^2 \) words of memory

\[
q \text{ potentially as large as } 2^n^3 / 3n^2 = O(n)
\]
Naïve Matrix Multiply

\{\text{implements } C = C + A \cdot B\}

for \(i = 1 \) to \(n \)
\{\text{read row } i \text{ of } A \text{ into fast memory}\}
for \(j = 1 \) to \(n \)
\{\text{read } C(i,j) \text{ into fast memory}\}
\{\text{read column } j \text{ of } B \text{ into fast memory}\}
for \(k = 1 \) to \(n \)
\(C(i,j) = C(i,j) + A(i,k) \cdot B(k,j) \)
\{\text{write } C(i,j) \text{ back to slow memory}\}

Matrix-multiply, optimized several ways

Naïve Matrix Multiply on RS/6000

Number of slow memory references on unblocked matrix multiply
\(m = n^2 \) to read each column of \(B \)
\(+ n^2 \) times
\(+ n^2 \) to read each row of \(A \) once
\(+ 2n^2 \) to read and write each element of \(C \) once
\(= n^3 + 3n^2 \)

So \(q = f / m = 2n^3 / (n^3 + 3n^2) \)
\(\approx 2 \) for large \(n \), no improvement over matrix-vector multiply

Inner two loops are just matrix-vector multiply, of row \(i \) of \(A \) times \(B \)
Similar for any other order of 3 loops

O(\(N^3 \)) performance would have constant cycles/flop
Performance looks like O(\(N^{4.7} \))
Naïve Matrix Multiply on RS/6000

Slide source: Larry Carter, UCSD

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

- Page miss every iteration
- TLB miss every iteration
- Cache miss every 16 iterations
- Page miss every 512 iterations

Block (Tiled) Matrix Multiply

Consider A, B, C to be N-by-N matrices of b-by-b subblocks where b=n/N is called the block size.

for i = 1 to N
 for j = 1 to N
 (read block C(i,j) into fast memory)
 for k = 1 to N
 (read block A(i,k) into fast memory)
 (read block B(k,j) into fast memory)
 C(i,j) = C(i,j) + A(i,k) * B(k,j) (do a matrix multiply on blocks)
 (write block C(i,j) back to slow memory)

Using Analysis to Understand Machines

The blocked algorithm has computational intensity q = b

- The larger the block size, the more efficient our algorithm will be.
- Limit: All three blocks from A, B, C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large.
- Assume your fast memory has size M_{fast}

$$3b^2 = M_{fast}, \text{ so } q \approx b = (M_{fast}/3)^{1/2}$$

- To build a machine to run matrix multiply at 1/2 peak arithmetic speed of the machine, we need a fast memory of size

$$M_{mem} \approx 3b^2 = 3q^2 = 3(t_m/t_f)^2$$

- This size is reasonable for L1 cache, but not for register sets.
- Note: analysis assumes it is possible to schedule the instructions perfectly.

<table>
<thead>
<tr>
<th>Machine</th>
<th>t_m/t_f</th>
<th>M_{mem}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>24.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>14</td>
<td>4.7</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>6.25</td>
<td>0.9</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>10</td>
<td>2.4</td>
</tr>
<tr>
<td>Power3</td>
<td>8.75</td>
<td>1.8</td>
</tr>
<tr>
<td>Power4</td>
<td>15</td>
<td>5.4</td>
</tr>
<tr>
<td>Itanium1</td>
<td>36</td>
<td>31.1</td>
</tr>
<tr>
<td>Itanium2</td>
<td>5.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Limits to Optimizing Matrix Multiply

• The blocked algorithm changes the order in which values are accumulated into each $C[i,j]$ by applying commutativity and associativity.

• The previous analysis showed that the blocked algorithm has computational intensity:
 \[q = b \leq (M_{fast}/3)^{1/2} \]

• There is a lower bound result that says we cannot do any better than this (using only associativity, so still doing n^3 multiplications).

• Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to:
 \[q = O((M_{fast})^{1/2}) \]
 • #words moved between fast and slow memory = $\Omega(n^3/M_{fast}^{1/2})$

Communication lower bounds for Matmul

• Hong/Kung theorem is a lower bound on amount of data communicated by matmul.

• Number of words moved between fast and slow memory (cache and DRAM, or DRAM and disk, or ...) = $\Omega(n^3/M_{fast}^{1/2})$

• Cost of moving data may also depend on the number of “messages” into which data is packed.

 • Eg: number of cache lines, disk accesses, ...
 • #messages = $\Omega(n^3/M_{fast}^{1/2})$

• Lower bounds extend to anything “similar enough” to nested loops.

 • Rest of linear algebra (solving linear systems, least squares...)
 • Dense and sparse matrices
 • Sequential and parallel algorithms, ...

• More recent: extends to any nested loops accessing arrays.

• Need (more) new algorithms to attain these lower bounds...

Review of lecture 2 so far (and a look ahead)

• Applications
 - How to decompose into well-understood algorithms (and their implementations).

• Algorithms (matmul as example)
 - Need simple model of hardware to guide design, analysis: minimize accesses to slow memory.
 - If lucky, theory describing “best algorithm”.
 - For $O(n^3)$ sequential matmul, must move $\Omega(n^3/\max(M_{fast}^{1/2}))$ words.

• Software tools
 - How do I implement my applications and algorithms in the most efficient and productive way?

• Hardware
 - Even simple programs have complicated behaviors.
 - “Small” changes make execution time vary by orders of magnitude.
BLAS speeds on an IBM RS6000/590

BLAS 3 (n-by-n matrix matrix multiply) vs BLAS 2 (n-by-n matrix vector multiply) vs BLAS 1 (saxpy of n vectors)

Peak speed = 266 Mflops

Dense Linear Algebra: BLAS2 vs. BLAS3

• BLAS2 and BLAS3 have very different computational intensity, and therefore different performance

What if there are more than 2 levels of memory?

• Need to minimize communication between all levels
 • Between L1 and L2 cache, cache and DRAM, DRAM and disk...
 • The tiled algorithm requires finding a good block size
 • Machine dependent
 • Need to “block” b x b matrix multiply in inner most loop
 • 1 level of memory => 3 nested loops (naïve algorithm)
 • 2 levels of memory => 6 nested loops
 • 3 levels of memory => 9 nested loops ...

• Cache Oblivious Algorithms offer an alternative
 • Treat n x n matrix multiply as a set of smaller problems
 • Eventually, these will fit in cache
 • Will minimize # words moved between every level of memory hierarchy – at least asymptotically
 • “Oblivious” to number and sizes of levels

Recursive Matrix Multiplication (RMM) (1/2)

• \(C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = A \cdot B = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix} \)

• True when each \(A_{ij} \) etc \(1 \times 1 \) or \(n/2 \times n/2 \)
• For simplicity: square matrices with \(n = 2^m \)
• Extends to general rectangular case

func C = RMM (A, B, n)
 if \(n = 1 \), \(C = A \cdot B \), else
 \{ C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2) \\
 C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2) \\
 C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2) \\
 C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) \}
 return
Recursive Matrix Multiplication (2/2)

```
func C = RMM (A, B, n)
if n=1, C = A * B, else
   {  C
      11 = RMM (A
      11, B
      11, n/2) + RMM (A
      12, B
      21, n/2)
      C
      12 = RMM (A
      11, B
      12, n/2) + RMM (A
      12, B
      22, n/2)
      C
      21 = RMM (A
      21, B
      11, n/2) + RMM (A
      22, B
      21, n/2)
      C
      22 = RMM (A
      21, B
      12, n/2) + RMM (A
      22, B
      22, n/2)
   }
return
```

A(n) = # arithmetic operations in RMM(. , . , n)
= 8 · A(n/2) + 4(n/2)² if n > 1, else 1
= 2n³ … same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(. , . , n)
= 8 · W(n/2) + 4 · 3(n/2)² if 3n² > M
fast, else 3n²
= O(n³ / (M
fast)¹/₂ + n²) … same as blocked matmul

Don’t need to know M
fast for this to work!

Experience with Cache-Oblivious Algorithms

- In practice, need to cut off recursion well before 1x1 blocks
 - Call “micro-kernel” on small blocks
- Implementing high-performance Cache-Oblivious code not easy
 - Careful attention to micro-kernel is needed
- Using fully recursive approach with highly optimized recursive micro-kernel, Pingali et al report that they never got more than 2/3 of peak. (unpublished, presented at LACSI’06)
- Issues with Cache Oblivious (recursive) approach
 - Recursive Micro-Kernels yield less performance than iterative ones using same scheduling techniques
 - Pre-fetching is needed to compete with best code: not well-understood in the context of Cache-Oblivious codes
- More recent work on CARMA (UCB) uses recursion for parallelism, but aware of available memory, very fast (later)
 - Up to 6.6x faster than Intel MKL for some matrix shapes, 17% for square

Recursion: Cache Oblivious Algorithms

- The tiled algorithm requires finding a good block size
- Cache Oblivious Algorithms offer an alternative
 - Treat nxn matrix multiply set of smaller problems
 - Eventually, these will fit in cache
- Cases for A (nxm) * B (mxp)
 - Case1: n>= max{m,p}:
 - split A horizontally
 - Case 2: m>= max{n,p}:
 - split A vertically and B horizontally
 - Case 3: p>= max{m,n}:
 - split B vertically
- Attains lower bound in O() sense

Recursive Data Layouts

- A related idea is to use a recursive structure for the matrix
 - Improve locality with machine-independent data structure
 - Can minimize latency with multiple levels of memory hierarchy
- There are several possible recursive decompositions depending on the order of the sub-blocks
- This figure shows Z-Morton Ordering (”space filling curve”)
- See papers on “cache oblivious algorithms” and “recursive layouts”

Advantages:
- the recursive layout works well for any cache size
Disadvantages:
- The index calculations to find A[i,j] are expensive
- Implementations switch to column-major for small sizes
Strassen’s Matrix Multiply

- The traditional algorithm (with or without tiling) has $O(n^3)$ flops
- Strassen discovered an algorithm with asymptotically lower flops
 - $O(n^{2.81})$
- Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
 - Strassen does it with 7 multiplies and 18 adds

Let $M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$

- $p_1 = (a_{12} - a_{22}) \cdot (b_{21} + b_{22})$
- $p_5 = a_{11} \cdot (b_{12} - b_{22})$
- $p_2 = (a_{11} + a_{22}) \cdot (b_{11} + b_{22})$
- $p_6 = a_{22} \cdot (b_{21} - b_{11})$
- $p_3 = (a_{11} - a_{21}) \cdot (b_{11} + b_{12})$
- $p_7 = (a_{21} + a_{22}) \cdot b_{11}$
- $p_4 = (a_{11} + a_{12}) \cdot b_{22}$

Then:
- $m_{11} = p_1 + p_2 - p_4 + p_6$
- $m_{12} = p_4 + p_5$
- $m_{21} = p_6 + p_7$
- $m_{22} = p_2 - p_3 + p_5 - p_7$

 extends to nxn by divide & conquer

Strassen (continued)

\[
T(n) = \begin{cases}
\text{Cost of multiplying nxn matrices} \\
7 \cdot T(n/2) + 18 \cdot (n/2)^2 \\
O(n \log_2 7) \\
O(n^{2.81})
\end{cases}
\]

- Asymptotically faster
- Several times faster for large n in practice
- Cross-over depends on machine
- "Tuning Strassen’s Matrix Multiplication for Memory Efficiency”, M. S. Thottethodi, S. Chatterjee, and A. Lebeck, in Proceedings of Supercomputing ’98
- Possible to extend communication lower bound to Strassen
 - 7 words moved between fast and slow memory
 - $O(\log M / \log 7)$

Other Fast Matrix Multiplication Algorithms

- World’s record was $O(n^{2.37548...})$
 - Coppersmith & Winograd, 1987
- New Record! 2.37548 reduced to 2.37293
 - Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011
- Newer Record! 2.37293 reduced to 2.37286
 - François Le Gall, 2014
- Lower bound on #words moved can be extended to (some) of these algorithms (2015 thesis of Jacob Scott)
- Possibility of $O(n^{2.372})$ algorithm?
 - Cohn, Umans, Kleinberg, 2003
- Can show they all can be made numerically stable
 - D., Dumitriu, Holtz, Kleinberg, 2007
- Can do rest of linear algebra (solve $Ax=b$, $Ax=\lambda x$, etc) as fast, and numerically stable
 - D., Dumitriu, Holtz, 2008
- Fast methods (besides Strassen) may need unrealistically large n

Tuning Code in Practice

- Tuning code can be tedious
 - Lots of code variations to try besides blocking
 - Machine hardware performance hard to predict
 - Compiler behavior hard to predict
- Response: "Autotuning"
 - Let computer generate large set of possible code variations, and search them for the fastest ones
 - Used with CS267 homework assignment in mid 1990s
 - PHiPAC, leading to ATLAS, incorporated in Matlab
 - We still use the same assignment
 - We (and others) are extending autotuning to other dwarfs / motifs, eg FFT
 - Sometimes all done “off-line”, sometimes at run-time
- Still need to understand how to do it by hand
 - Not every code will have an autotuner
 - Need to know if you want to build autotuners
Search Over Block Sizes

- Performance models are useful for high level algorithms
 - Helps in developing a blocked algorithm
 - Models have not proven very useful for block size selection
 - too complicated to be useful
 - See work by Sid Chatterjee for detailed model
 - too simple to be accurate
 - Multiple multidimensional arrays, virtual memory, etc.
 - Speed depends on matrix dimensions, details of code, compiler, processor

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

ATLAS (DGEMM n = 500)

- ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named "register" variables
- Tiling for multiple levels of cache and TLB
- Exploiting fine-grained parallelism in processor
 - superscalar; pipelining
- Complicated compiler interactions (flags)
- Hard to do by hand (but you’ll try)
- Automatic optimization an active research area
 - ASPIRE: aspire.eecs.berkeley.edu
 - BeBOP: bebop.cs.berkeley.edu
 - Weekly group meeting Mondays 1pm
 - PHiPAC: www.icsi.berkeley.edu/~bilmes/phipac
 - in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas
Removing False Dependencies

• Using local variables, reorder operations to remove false dependencies

\[a[i] = b[i] + c; \]
\[a[i+1] = b[i+1] \ast d; \]

false read-after-write hazard between \(a[i] \) and \(b[i+1] \)

With some compilers, you can declare \(a \) and \(b \) unaliased.

• Done via "restrict pointers," compiler flag, or pragma

Exploit Multiple Registers

• Reduce demands on memory bandwidth by pre-loading into local variables

```
while( ... ) {
    *res++ = filter[0]*signal[0] + filter[1]*signal[1] + filter[2]*signal[2];
    signal++;
}
```

```
float f0 = filter[0];
float f1 = filter[1];
float f2 = filter[2];
while( ... ) {
    *res++ = f0*signal[0] + f1*signal[1] + f2*signal[2];
    signal++;
}
```

Example is a convolution

Exploit Independent Operations

• Hide instruction latency
 • Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 • Balance the instruction mix (what functional units are available?)

```
f1 = f5 \ast f9;
f2 = f6 + f10;
f3 = f7 \ast f11;
f4 = f8 + f12;
```

Loop Unrolling

• Expose instruction-level parallelism

```
float f0 = filter[0], f1 = filter[1], f2 = filter[2];
float s0 = signal[0], s1 = signal[1], s2 = signal[2];
*res++ = f0*s0 + f1*s1 + f2*s2;
do {
    signal += 3;
    s0 = signal[0];
    res[0] = f0*s1 + f1*s2 + f2*s0;
    s1 = signal[1];
    res[1] = f0*s2 + f1*s0 + f2*s1;
    s2 = signal[2];
    res[2] = f0*s0 + f1*s1 + f2*s2;
    res += 3;
} while( ... );
```
Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality
 - Alternative: use different data structures from start (if users willing)
 - Recall recursive data layouts

<table>
<thead>
<tr>
<th>Original matrix (numbers are addresses)</th>
<th>Reorganized into 2x2 blocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4 8 12</td>
<td>0 2 8 10</td>
</tr>
<tr>
<td>1 5 9 13</td>
<td>1 3 9 11</td>
</tr>
<tr>
<td>2 6 10 14</td>
<td>4 6 12 13</td>
</tr>
<tr>
<td>3 7 11 15</td>
<td>5 7 14 15</td>
</tr>
</tbody>
</table>

Locality in Other Algorithms

- The performance of any algorithm is limited by \(q \)
 - \(q = \text{"computational intensity"} = \frac{\text{#arithmetic_ops}}{\text{#words_moved}} \)
- In matrix multiply, we increase \(q \) by changing computation order
 - increased temporal locality
- For other algorithms and data structures, even hand-transformations are still an open problem
 - Lots of open problems, class projects

Summary of Lecture 2

- Details of machine are important for performance
 - Processor and memory system (not just parallelism)
 - Before you parallelize, make sure you’re getting good serial performance
 - What to expect? Use understanding of hardware limits
- There is parallelism hidden within processors
 - Pipelining, SIMD, etc
- Machines have memory hierarchies
 - 100s of cycles to read from DRAM (main memory)
 - Caches are fast (small) memory that optimize average case
- Locality is at least as important as computation
 - Temporal: re-use of data recently used
 - Spatial: using data nearby to recently used data
- Can rearrange code/data to improve locality
 - Goal: minimize communication = data movement

Class Logistics

- Homework 0 posted on web site
 - Find and describe interesting application of parallelism
 - Due Friday Jan 29
 - Could even be your intended class project
- Please fill in on-line class survey by midnight Jan 28
 - We need this to assign teams for Homework 1
 - Teams will be announced Friday morning Jan 29, when HW 1 is posted
- Please fill out on-line request for Stampede account
 - Needed for GPU part of assignment 2
 - Also has Intel Xeon-Phi
Some reading for today (see website)

- Sourcebook Chapter 3, (note that chapters 2 and 3 cover the material of lecture 2 and lecture 3, but not in the same order).
- Web pages for reference:
 - BeBOP Homepage
 - ATLAS Homepage
 - BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) implementations of the BLAS, with documentation.
 - LAPACK (Linear Algebra PACKAGE), a standard linear algebra library optimized to use the BLAS effectively on uniprocessors and shared memory machines (software, documentation and reports)
 - ScalAPACK (Scalable LAPACK), a parallel version of LAPACK for distributed memory machines (software, documentation and reports)
- Tuning Strassen's Matrix Multiplication for Memory Efficiency
 - Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck in Proceedings of Supercomputing ’98, November 1998 [postscript]
- Many related papers at bebop.cs.berkeley.edu