CS 267: Applications of Parallel Computers

Dynamic Load Balancing

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr15

Outline

- Motivation for Load Balancing
- Recall graph partitioning as static load balancing technique
- Overview of load balancing problems, as determined by
 - Task costs
 - Task dependencies
 - Locality needs
- Spectrum of solutions
 - Static - all information available before starting
 - Semi-Static - some info before starting
 - Dynamic - little or no info before starting
 - Or: how rapidly do costs/dependencies/locality needs change?
- Survey of solutions
 - How each one works
 - Theoretical bounds, if any
 - When to use it, tools

Sources of inefficiency in parallel codes

- Poor single processor performance
 - Typically in the memory system (recall matmul homework)
- Too much parallelism overhead
 - Thread creation, synchronization, communication
- Load imbalance
 - Different amounts of work across processors
 - Computation and communication
 - Different speeds (or available resources) for the processors
 - Possibly due to load on shared machine
 - Heterogeneous resources (eg CPU + GPU)
- How to recognize load imbalance
 - Time spent at synchronization is high and is uneven across processors, but not always so simple ...

Measuring Load Imbalance

- Challenges:
 - Can be hard to separate from high synchronization overhead
 - Especially subtle if not bulk-synchronous
 - "Spin locks" can make synchronization look like useful work
 - Note that imbalance may change over phases
 - Insufficient parallelism always leads to load imbalance
 - Tools like IPM, TAU can help (acts.nersc.gov)
Review of Graph Partitioning – static case

- Partition $G(N,E)$ so that
 - $N = N_1 \cup \ldots \cup N_p$, with each $|N_i| \sim |N|/p$
 - As few edges connecting different N_i and N_k as possible
- If $N = \{\text{tasks}\}$, each unit cost, edge $e=(i,j)$ means task i has to communicate with task j, then partitioning means
 - balancing the load, i.e. each $|N_i| \sim |N|/p$
 - minimizing communication volume
- Optimal graph partitioning is NP complete, so we use heuristics (see earlier lectures)
 - Spectral, Kernighan-Lin, Multilevel ...
- Good software available
 - (Par)METIS, Scotch, Zoltan, ...
- Speed of partitioner trades off with quality of partition
 - Better load balance costs more; may or may not be worth it
- Need to know tasks, communication pattern before starting
 - What if you don’t? Can redo partitioning, but not frequently

Load Balancing Overview

Load balancing differs with properties of the tasks

- Tasks costs
 - Do all tasks have equal costs?
 - If not, when are the costs known?
 - Before starting, when task created, or only when task ends
- Task dependencies
 - Can all tasks be run in any order (including parallel)?
 - If not, when are the dependencies known?
 - Before starting, when task created, or only when task ends
 - One task may prematurely end another task (eg search)
- Locality (may tradeoff with load balance)
 - Is it important for some tasks to be scheduled on the same processor (or nearby) to reduce communication cost?
 - When is the information about communication known?
- If properties known only when tasks end
 - Are statistics fixed, change slowly, change abruptly?

Task Cost Spectrum

Schedule a set of tasks under one of the following assumptions:

- **Easy**: The tasks all have equal (unit) cost. branch-free loops
- **Harder**: The tasks have different, but known, times. sparse matrix-vector multiply
- **Hardest**: The task costs unknown until after execution. GCM, circuits, search

Task Dependency Spectrum

Schedule a graph of tasks under one of the following assumptions:

- **Easy**: The tasks can execute in any order. dependence free loops
- **Harder**: The tasks have a predictable structure. matrix computations (dense, and some sparse, Cholesky)
- **Hardest**: The structure changes dynamically (slowly or quickly) search, sparse LU
Task Locality Spectrum (Communication)

Schedule a set of tasks under one of the following assumptions:

- **Easy:** The tasks, once created, do not communicate.
- **Harder:** The tasks communicate in a predictable pattern.
- **Hardest:** The communication pattern is unpredictable.

Spectrum of Solutions

A key question is when certain information about the load balancing problem is known.

Leads to a spectrum of solutions:

- **Static scheduling.** All information is available to scheduling algorithm, which runs before any real computation starts.
 - Off-line algorithms, eg graph partitioning, DAG scheduling
 - Still might use dynamic approach if too much information
- **Semi-static scheduling.** Information may be known at program startup, or the beginning of each timestep, or at other well-defined points.
 - Offline algorithms may be used even though the problem is dynamic.
 - eg Kernighan-Lin, as in Zoltan
- **Dynamic scheduling.** Information is not known until mid-execution.
 - On-line algorithms – main topic today

Dynamic Load Balancing

- **Motivation for dynamic load balancing**
 - Search algorithms as driving example
- **Centralized load balancing**
 - Overview
 - Special case for schedule independent loop iterations
 - Makes most sense in shared memory environment
 - Hard to scale to large numbers of processors
- **Distributed load balancing**
 - Overview – randomization often used
 - Engineering
 - Theoretical results

Search

- **Search problems are often:**
 - Computationally expensive
 - Have very different parallelization strategies than physical simulations.
 - Require dynamic load balancing
- **Examples:**
 - Optimal layout of VLSI chips
 - Robot motion planning
 - Chess and other games (N-queens)
 - Speech processing
 - Constructing phylogeny tree from set of genes
Example Problem: Tree Search

- In Tree Search the tree unfolds dynamically
- May be a graph if there are common sub-problems along different paths
- Graphs unlike meshes which are precomputed and have no ordering constraints

Depth vs Breadth First Search (Review)

- DFS with Explicit Stack – little parallelism
 - Put root into Stack
 - Stack is data structure where items added to and removed from the top only
 - While Stack not empty
 - If node on top of Stack satisfies goal of search, return result, else
 - Mark node on top of Stack as "searched"
 - If top of Stack has an unsearched child, put child on top of Stack, else remove top of Stack
- BFS with Explicit Queue – lots of parallelism (depending on graph)
 - Put root into Queue
 - Queue is data structure where items added to end, removed from front
 - While Queue not empty
 - If node at front of Queue satisfies goal of search, return result, else
 - Mark node at front of Queue as "searched"
 - If node at front of Queue has any unsearched children, put them all at end of Queue
 - Remove node at front from Queue

Sequential Search Algorithms

- Depth-first search (DFS)
 - Simple backtracking
 - Search to bottom, backing up to last choice if necessary
 - Depth-first branch-and-bound
 - Keep track of best solution so far ("bound")
 - Cut off sub-trees that are guaranteed to be worse than bound
 - Iterative Deepening ("in between" DFS and BFS)
 - Choose a bound d on search depth, and use DFS up to depth d
 - If no solution is found, increase d and start again
 - Can use an estimate of cost-to-solution to get bound on d
- Breadth-first search (BFS)
 - Search all nodes at distance 1 from the root, then distance 2, and so on

Parallel Search

- Consider simple backtracking search
 - Try static load balancing: spawn each new task on an idle processor, until all have a subtree

- We can and should do better than this …
Centralized Scheduling

- Keep a queue of tasks waiting to be done
 - May be done by manager task
 - Or a shared data structure protected by locks

Centralized Task Queue: Scheduling Loops

- When applied to loops, often called self scheduling:
 - Tasks may be range of loop indices to compute
 - Assumes independent iterations
 - Loop body has unpredictable time (branches) or the problem is not interesting

- Originally designed for:
 - Scheduling loops by compiler (or runtime-system)
 - Original paper by Tang and Yew, ICPP 1986

- Properties
 - Dynamic, online scheduling algorithm
 - Good for a small number of processors (centralized)
 - Special case of task graph – independent tasks, known at once

Variations on Self-Scheduling

- When applied to loops, often called self scheduling
 - Assume independent loop iterations, varying run times
 - Typically, don’t want to grab smallest unit of parallel work, i.e., a single loop iteration
 - Too much contention at shared queue
 - Instead, choose a chunk of tasks of size K.
 - If K is large, access overhead for task queue is small
 - If K is small, we are likely to have even finish times (load balance)
 - (at least) Four Variations:
 1. Use a fixed chunk size
 2. Guided self-scheduling
 3. Tapering
 4. Weighted Factoring

Variation 1/4: Fixed Chunk Size

- Kruskal and Weiss give a technique for computing the optimal chunk size (IEEE Trans. Software Eng., 1985)

 - Requires a lot of information about the problem characteristics
 - e.g., task costs, number of tasks, cost of scheduling
 - Probability distribution of runtime of each task (same for all)
 - Assumes distribution is IFR = “Increasing Failure Rate”
 - For any t>0, P(X > x+t | X > x) is a decreasing function of x
 - $K_{opt} = (2^{2/3} \cdot \#tasks \cdot time_to_access_queue/(\sigma \cdot p \cdot (log p)^{2/3}))^{2/3}$

 - Not very useful in practice
 - Distribution must be known at loop startup time
Variation 2/4: Guided Self-Scheduling

• Idea: use larger chunks at the beginning to avoid excessive overhead and smaller chunks near the end to even out the finish times.
 • The chunk size K_i at the i^{th} access to the task pool is given by $K_i = \text{ceiling}(R_i/p)$
 • where R_i is the total number of tasks remaining and p is the number of processors

Variation 3/4: Tapering

• Idea: the chunk size, K_i, is a function of not only the remaining work, but also the task cost variance
 • variance is estimated using history information
 • high variance => small chunk size should be used
 • low variance => larger chunks OK

 • Gives analysis (based on workload distribution)
 • Also gives experimental results -- tapering always works at least as well as GSS, although difference is often small

Variation 4/4: Weighted Factoring

• Idea: similar to self-scheduling, but divide task cost by computational power of requesting node

• Useful for heterogeneous systems
• Also useful for shared resource clusters, e.g., built using all the machines in a building
 • as with Tapering, historical information is used to predict future speed
 • “speed” may depend on the other loads currently on a given processor

• See Hummel, Schmit, Uma, and Wein, SPAA ‘96
 • includes experimental data and analysis

Summary: When is Self-Scheduling a Good Idea?

Useful when:

• A batch (or set) of tasks without dependencies
 • can also be used with dependencies, but most analysis has only been done for task sets without dependencies

• The cost of each task is unknown
• Locality is not important
• Shared memory machine, or at least number of processors is small -- centralization is OK
Cilk: A Language with Built-in Load balancing

A C language for programming dynamic multithreaded applications on shared-memory multiprocessors.

CILK (Leiserson et al) (supertech.lcs.mit.edu/cilk)
- Created startup company called CilkArts
- Acquired by Intel

Example applications:
- virus shell assembly
- graphics rendering
- n-body simulation
- heuristic search
- dense and sparse matrix computations
- friction-stir welding simulation
- artificial evolution

Fibonacci Example: Creating Parallelism

```c
int fib (int n) {
    if (n<2) return (n);
    else {
        int x,y;
        x = spawn fib(n-1);
        y = spawn fib(n-2);
        sync;
        return (x+y);
    }
}
```

Cilk is a faithful extension of C. A Cilk program’s serial elision is always a legal implementation of Cilk semantics. Cilk provides no new data types.

Dynamic Multithreading

```c
cilk int fib (int n) {
    if (n<2) return (n);
    else {
        int x,y;
        x = spawn fib(n-1);
        y = spawn fib(n-2);
        sync;
        return (x+y);
    }
}
```

Example: `fib(4)`

The computation dag unfolds dynamically.

Algorithmic Complexity Measures

\[T_P = \text{execution time on } P \text{ processors} \]
\[T_1 = \text{work} \]
\[T_\infty = \text{span}^* \]

LOWER BOUNDS
- \(T_P \geq T_1/P \)
- \(T_P \geq T_\infty \)

*Also called critical-path length or computational depth.
Speedup

Definition: \(T_1 / T_p = \text{speedup} \) on \(P \) processors.

If \(T_1 / T_p = \Theta(P) \leq P \), we have linear speedup;
 \(= P \), we have perfect linear speedup;
 \(> P \), we have superlinear speedup,
which is not possible in our model, because of the lower bound \(T_p \geq T_1 / P \).

\(T_1 / T_\infty \) = available parallelism
 = the average amount of work per step along the span (critical path).

Greedy Scheduling

Idea: Do as much as possible on every step.

Definition: A thread is ready if all its predecessors have executed.

Complete step
 • \(\geq P \) threads ready.
 • Run any \(P \).

Incomplete step
 • \(< P \) threads ready.
 • Run all of them.

Cilk’s Work-Stealing Scheduler

Each processor maintains a work deque of ready threads, and it manipulates the bottom of the deque like a stack.

When a processor runs out of work, it steals a thread from the top of a random victim’s deque.

Performance of Work-Stealing

Theorem: Cilk’s work-stealing scheduler achieves an expected running time of

\[T_p \leq T_1 / P + O(T_\infty) \]

on \(P \) processors.

Pseudoproof. A processor is either working or stealing. The total time all processors spend working is \(T_1 \). Each steal has a \(1/P \) chance of reducing the span by 1. Thus, the expected cost of all steals is \(O(PT_\infty) \). Since there are \(P \) processors, the expected time is

\[(T_1 + O(PT_\infty)) / P = T_1 / P + O(T_\infty). \]
Analysis of work-stealing (WS) with private caches

Scheduler: Work Stealing [BL’99, ABB’00]

Observation: Polylog Depth + Good Cache Complexity = Good performance on Private Caches

Program

WS Scheduler

Machine

params:
p, M, C, s

Memory

C:
Cache miss time

M = cache size
Q = #cache misses
H = space in heap

Q_p <= Q_1 + O(pT_\infty * \text{ceil}(C/s) * M)
H_p <= H_1
T_p <= (T_1 + Q_p C/p + T_\infty C)

Extensions/variations on work stealing

• Parallel-Depth First Schedule
 • Assume Depth First order of tasks known, prioritize in this order
 • Greedy work schedule where “ready tasks” executed in priority order
 • Better bounds on parallel space, locality on shared caches

• Space Bounded schedulers
 • Anchor tasks to preserve locality
 • Do not allow tasks to move, once assigned
 • Assignments must not allow caches to overflow

Further analyses of Cilk’s Performance

• Bounds on #cache misses caused by work stealing if each processor has private cache, single shared (slow) memory
• Bounds extended to hierarchical memories
• Space needed (for stacks) by P processors at most P times space needed by one processor

• General conclusions:
 • Work stealing good idea if execution DAG not too deep, and sequential implementation would not generate too many cache misses

Space Bounds

Theorem. Let S_1 be the stack space required by a serial execution of a Cilk program. Then, the space required by a P-processor execution is at most $S_P = PS_1$.

Proof (by induction). The work-stealing algorithm maintains the busy-leaves property: every extant procedure frame with no extant descendents has a processor working on it.
DAG Scheduling software

- **QUARK (U. Tennessee)**
 - Library developed to support PLASMA for pipelining ("synchronization avoiding") dense linear algebra
- **SMPss (Barcelona)**
 - Compiler based; Data usage expressed via pragmas; Proposal to be in OpenMP; Recently added GPU support
- **StarPU (INRIA)**
 - Library based; GPU support; Distributed data management; Codelets=tasks (map CPU, GPU versions)
- **DAGUE/DPLASMA (MPI group work)**
 - Needs a compact DAG representation; Distributed memory; Designed to be very, very scalable
- **Other tools (e.g., fork-join graphs only)**
 - Cilk, Intel Threaded Building Blocks (TBB); Microsoft CCR, ...

Pipelining: Cholesky Inversion

\[
POTRF + TRTRI + LAUUM: 25 = (7t + 3) \\
\text{Cholesky Factorization alone: } 3t - 2 \\
\text{Pipelined: } 18 = (3t + 6) \\
\]

Source: Julien Langou: ICL presentation 2011/02/04

Simplified QUARK architecture

Scheduling is done using a combination of task assignment to workers (via locality reuse, etc.) and work stealing.

Basic QUARK API

Setup QUARK data structures
QUARK_New [standalone] or QUARK_Setup [part of external library]

For each kernel routine, insert into QUARK runtime
QUARK_Insert_Task(quark, function, task_flags, arg_size, arg_ptr, arg_flags, ..., ..., ..., 0);

When done, exit QUARK
QUARK_Delete[standalone] or QUARK_Waitall [return to external library]

Other basic calls
QUARK_Barrier
QUARK_Cancel_Task
QUARK_Free (used after QUARK_Waitall)
Scalability of DAG Schedulers

- How many tasks are there in DAG for dense linear algebra operation on an $n \times n$ matrix with $b \times b$ blocks?
- $O((n/b)^3) = 1M$, for $n=10,000$ and $b = 100$
- Creating, scheduling entire DAG does not scale
- PLASMA: static scheduling of entire DAG
- QUARK: dynamic scheduling of “frontier” of DAG at any one time

Performance – 12 core

Performance of LU factorization (DGETRF)
Starting from standard layout, PLASMA static, PLASMA QUARK, MKL
Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s

- PLASMA Static (12 threads)
- QUARK (12 threads)
- MKL (12 threads)

MKL is really good when there are a few cores

Performance – 24 core

Performance of LU factorization (DGETRF)
Starting from standard layout, PLASMA static, PLASMA QUARK, MKL
Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s

- PLASMA Static (24 threads)
- QUARK (24 threads)
- MKL (24 threads)

QUARK is pretty close to static PLASMA

Performance – 48 core

Performance of LU factorization (DGETRF)
Starting from standard layout, PLASMA static, PLASMA QUARK, MKL
Platform: 48 core (8 x 6-core) 2.8GHz Opteron; 128GB; peak 538 GFlop/s

- PLASMA Static (48 threads)
- QUARK (48 threads)
- MKL (48 threads)

QUARK is approx 10% less than static; MKL scales up more slowly.
Limitations: Future Work

• VERY sensitive to task size
 • For PLASMA, small tile sizes give bad performance, need NB around 180
 • Overhead kills performance for small tasks.

• Master handles serial task insertion
 • This is a hurdle for large scale scalability
 • Some work may be delegated in future versions

• Scalability
 • Largest tests are for 48 cores
 • Large scale scalability is untested
 • For ongoing work see icl.cs.utk.edu/iclprojects/

Trace: LU factorization

LU factorization (dgetrf) of N=5000 on 48 cores using dynamic QUARK runtime
Trace created using EZTrace and visualized using ViTE

Distributed Task Queues

• The obvious extension of task queue to distributed memory is:
 • a distributed task queue (or “bag”)
 • Idle processors can “pull” work, or busy processors “push” work

• When are these a good idea?
 • Distributed memory multiprocessors
 • Or, shared memory with significant synchronization overhead
 • Locality is not (very) important
 • Tasks may be:
 • known in advance, e.g., a bag of independent ones
 • dependencies exist, i.e., being computed on the fly
 • The costs of tasks is not known in advance

Distributed Dynamic Load Balancing

• Dynamic load balancing algorithms go by other names:
 • Work stealing, work crews, ...

• Basic idea, when applied to tree search:
 • Each processor performs search on disjoint part of tree
 • When finished, get work from a processor that is still busy
 • Requires asynchronous communication
How to Select a Donor/Acceptor Processor

- Three basic techniques:
 1. Asynchronous round robin
 - Each processor \(k \) keeps a variable \(\text{target}_k \)
 - When a processor runs out of work, requests work from \(\text{target}_k \)
 - Set \(\text{target}_k = (\text{target}_k + 1) \mod \text{procs} \)
 2. Global round robin
 - Proc 0 keeps a single variable \(\text{target} \)
 - When a processor needs work, gets target, requests work from target
 - Proc 0 sets target = (target + 1) \mod \text{procs}
 3. Random polling/stealing
 - When a processor needs work, select a random processor and request work from it
 4. Random distribution of work
 - When a processor has too much work, select a random processor to take it
- Repeat if no work is found

How to Split Work

- First parameter is number of tasks to give when asked
 - Related to the self-scheduling variations, but total number of tasks is now unknown
- Second question is which one(s)
 - Send tasks near the bottom of the stack (oldest)
 - Execute from the top (most recent)
 - May be able to do better with information about task costs

Theoretical Results (1)

- Main result: Simple randomized algorithms are optimal with high probability
 - Others show this for independent, equal sized tasks
 - "Throw \(n \) balls into \(n \) random bins": \(\Theta(\log n / \log \log n) \) in fullest bin
 - Throw \(d \) times and pick the emptiest bin: \(\log \log n / \log d \) [Azar]
 - Extension to parallel throwing [Adler et all 95]
 - Shows \(p \log p \) tasks leads to "good" balance
 - Karp and Zhang show this for a tree of unit cost (equal size) tasks
 - Parent must be done before children
 - Tree unfolds at runtime
 - Task number/priorities not known a priori
 - Children "pushed" to random processors

Theoretical Results (2)

- Main result: Simple randomized algorithms are optimal with high probability
 - Blumofe and Leiserson [94] show this for a fixed task tree of variable cost tasks
 - their algorithm uses task pulling (stealing) instead of pushing, which is good for locality
 - i.e., when a processor becomes idle, it steals from a random processor
 - also have (loose) bounds on the total memory required
 - Used in Cilk
 - "better to receive than to give"
 - Chakrabarti et al [94] show this for a dynamic tree of variable cost tasks
 - works for branch and bound, i.e. tree structure can depend on execution order
 - uses randomized pushing of tasks instead of pulling, so worse locality
Distributed Task Queue References

• Introduction to Parallel Computing by Kumar et al (text)
• Multipol library (See C.-P. Wen, UCB PhD, 1996.)
 • Part of Multipol (www.cs.berkeley.edu/projects/multipol)
 • Try to push tasks with high ratio of cost_to_compute/cost_to_push
 • Ex: for matmul, ratio = \(\frac{2n^3 \text{cost(flop)}}{2n^2 \text{cost(send a word)}} \)
• Goldstein, Rogers, Grunwald, and others (independent work) have all shown
 • advantages of integrating into the language framework
 • very lightweight thread creation

Diffusion-Based Load Balancing

• In the randomized schemes, the machine is treated as fully-connected.
• Diffusion-based load balancing takes topology into account
 • Send some extra work to a few nearby processors
 • Average work with nearby neighbors
 • Analogy to diffusion (Jacobi for solving Poisson equation)
 • Locality properties better than choosing random processor
 • Load balancing somewhat slower than randomized
 • Cost of tasks must be known at creation time
 • No dependencies between tasks
• See Ghosh et al, SPAA96 for a second order diffusive load balancing algorithm
 • takes into account amount of work sent last time
 • avoids some oscillation of first order schemes

Diffusion-based load balancing

The machine is modeled as a graph
• At each step, we compute the weight of task remaining on each processor
 • This is simply the number if they are unit cost tasks
• Each processor compares its weight with its neighbors and performs some averaging
 • Analysis using Markov chains
• See Ghosh et al, SPAA96 for a second order diffusive load balancing algorithm
 • takes into account amount of work sent last time
 • avoids some oscillation of first order schemes
• Note: locality is still not a major concern, although balancing with neighbors may be better than random

Charm++

Load balancing based on Overdecomposition

• Context: “Iterative Applications”
 • Repeatedly execute similar set of tasks
• Idea: decompose work/data into chunks (charles in Charm++) , and migrate charles for balancing loads
 • Chares can be split or merged, but typically less frequently (or unnecessary in many cases)
• How to predict the computational load and communication between objects?
 • Could rely on user-provided info, or based on simple metrics
 • (e.g. number of elements)
 • Alternative: principle of persistence
 • Statistics change slowly, can rebalance occasionally
• Software, documentation at charm.cs.uiuc.edu
 • Many applications: NAMD, LeanMD, OpenAtom, ChaNGa, ...
Measurement Based Load Balancing in Charm++

- Principle of persistence (A Heuristic)
 - Object communication patterns and computational loads tend to persist over time, so recent past good predictor of future
 - In spite of dynamic behavior
 - Abrupt but infrequent changes
 - Slow and small changes
 - Only a heuristic, but applies on many applications
- Measurement based load balancing
 - Runtime system (in Charm++) schedules objects and mediates communication between them, so can measure load
 - Use the instrumented data-base periodically to make new decisions, and migrate objects accordingly
- Charm++ provides a suite of strategies, and plug-in capability for user-defined ones
 - Also, a meta-balancer for deciding how often to balance, and what type of strategy to use

Periodic Load Balancing Strategies

- Many alternative strategies can use the same database
 - OCG: Object communication graph
 - Or simply #loads of each object, if communication unimportant
- Centralized strategies: collect data on one processor
 - Feasible on up to a few thousand cores, because number of objects is typically small (10-100 per core?)
 - Use Graph partitioners, or greedy strategies
 - Or refinement strategies: mandated to keep most objects on the same processors
 - Charm++ provides a suite of strategies, and plug-in capability for user-defined ones
 - Also, a meta-balancer for deciding how often to balance, and what type of strategy to use

Load Balancing Steps

- Regular Timesteps
- Instrumented Timesteps
- Detailed, aggressive Load Balancing
- Refinement Load Balancing
- Time

Periodic Load Balancing for Large machines

- Two Challenges:
 - Object communication graph cannot be brought to one processor
 - A solution: Hierarchical load balancer (next slide)
 - Interconnection topology must be taken into account
 - Limited bisection bandwidth (on Torus networks, for example)
 - Solution: topology-aware balancers (later slides)
Charm++ Hierarchical Load Balancer Scheme

- **Refinement-based Load balancing**
- **OCG-based Load balancing**

Source: Laxmikant Kale

Topology-aware load balancing

- **Metric:** Average dilation (equivalently, sum of hop-bytes)
- **Object-based over-decomposition helps balancing**
- **When (almost) near-neighbor communication dominates**
 - And geometric information available
 - Simplest case, but challenges: Aspect ratios, load variations,
 - Strategies: ORB, many heuristic placement strategies
 - (A. Bhatele Phd. Thesis)
 - Variation: A set of pairwise interactions (e.g. Molecular dynamics) among geometrically placed primary objects:
 - Strategy: place within the “brick” formed by the two primary objs
- **When application has multiple phases:**
 - Strategy: often blocking helps. Alternatively, optimize one phase (better than optimizing neither)
 - Example: OpenAtom for Quantum Chemistry

Efficacy of Topology aware load balancing

- **NAMD biomolecular simulation running on BG/P**
- **Multi-phase application:** OpenAtom for Quantum Chemistry
- **Reduced execution time from 9 s to 5 s**

Source: Laxmikant Kale
Summary and Take-Home Messages

• There is a fundamental trade-off between locality and load balance
• Many algorithms, papers, & software for load balancing
• Key to understanding how and what to use means understanding your application domain and their target
 • Shared vs. distributed memory machines
 • Dependencies among tasks, tasks cost, communication
 • Locality oblivious vs locality "encouraged" vs locality optimized
 Computational intensity: ratio of computation to data movement cost
 • When you know information is key (static, semi, dynamic)
• Open question: will future architectures lead to so much load imbalance that even "regular" problems need dynamic balancing?