Motifs

The Motifs (formerly “Dwarfs”) from “The Berkeley View” (Asanovic et al.)

Motifs form key computational patterns

Outline and References

- Outline
 - Definitions
 - A few applications of FFTs
 - Sequential algorithm
 - Parallel 1D FFT
 - Parallel 3D FFT
 - Autotuning FFTs: FFTW and Spiral projects

- References
 - Previous CS267 lectures
 - FFTW project: http://www.fftw.org
 - Spiral project: http://www.spiral.net
 - LogP: UCB EECS Tech Report UCB/CSD-92-713
 - Lecture by Geoffrey Fox:
 http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/cps615fft00.ppt

Definition of Discrete Fourier Transform (DFT)

- Let \(i = \sqrt{-1} \) and index matrices and vectors from 0.
- The (1D) DFT of an \(m \)-element vector \(\mathbf{v} \) is:
 \[
 F\mathbf{v} = \begin{bmatrix}
 F[j,k] = \varpi^{j\cdot k}, & 0 \leq j, k \leq m-1
 \end{bmatrix}
 \]
 and where \(\varpi \) is:
 \[
 \varpi = e^{(2\pi i/m)} = \cos(2\pi i/m) + i\sin(2\pi i/m)
 \]
 \(\varpi \) is a complex number with whose \(m \)-th power \(\varpi^m = 1 \) and is therefore called an \(m \)-th root of unity
 - E.g., for \(m = 4 \): \(\varpi = i, \varpi^2 = -1, \varpi^3 = -i, \varpi^4 = 1 \)
- The 2D DFT of an \(m \times m \) matrix \(\mathbf{V} \) is \(F^*\mathbf{V}^*F \)
 - Do 1D DFT on all the columns independently, then all the rows
 - Higher dimensional DFTs are analogous
Motivation for Fast Fourier Transform (FFT)

- Signal processing
- Image processing
- Solving Poisson’s Equation nearly optimally
 - $O(N \log N)$ arithmetic operations, $N = \#\text{unknowns}$
 - Competitive with multigrid
- Fast multiplication of large integers

Using the 1D FFT for filtering

- Signal = $\sin(7t) + .5 \sin(5t)$ at 128 points
- Noise = random number bounded by .75
- Filter by zeroing out FFT components < .25

Using the 2D FFT for image compression

- Image = 200x320 matrix of values
- Compress by keeping largest 2.5% of FFT components
- Similar idea used by jpeg

Recall: Poisson’s equation arises in many models

3D: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = f(x,y,z)$
2D: $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$
1D: $\frac{d^2 u}{dx^2} = f(x)$

- Electrostatic or Gravitational Potential: Potential(position)
- Heat flow: Temperature(position, time)
- Diffusion: Concentration(position, time)
- Fluid flow: Velocity, Pressure, Density(position, time)
- Elasticity: Stress, Strain(position, time)
- Variations of Poisson have variable coefficients
Solving Poisson Equation with FFT (1/2)

1D Poisson equation: solve \(L_1 x = b \) where

\[
L_1 = \begin{bmatrix}
2 & -1 & & \\
-1 & 2 & -1 & \\
& -1 & 2 & -1 \\
& & -1 & 2 \\
& & & -1 & 2
\end{bmatrix}
\]

Graph and "stencil"

2D Poisson equation: solve \(L_2 x = b \) where

\[
L_2 = \begin{bmatrix}
4 & -1 & & & \\
-1 & 4 & -1 & & \\
& -1 & 4 & -1 & \\
& & -1 & 4 & -1 \\
& & & -1 & 4 \\
& & & & -1 & 4
\end{bmatrix}
\]

Graph and "5 point stencil"

3D case is analogous (7 point stencil)

Solving 2D Poisson Equation with FFT (2/2)

Use facts that

- \(L_1 = F \cdot D \cdot F^T \) is eigenvalue/eigenvector decomposition, where
 - \(F \) is very similar to FFT (imaginary part)
 - \(F(j,k) = (2/(n+1))^{1/2} \cdot \sin(j \pi x / (n+1)) \)
 - \(D = \) diagonal matrix of eigenvalues
 - \(D(j,j) = 2(1 - \cos(j \pi / (n+1)) \)
- 2D Poisson same as solving \(L_1 \cdot X + X \cdot L_1 = B \) where
 - \(X \) square matrix of unknowns at each grid point, \(B \) square too

Substitute \(L_1 = F \cdot D \cdot F^T \) into 2D Poisson to get algorithm

1. Perform 2D "FFT" on \(B \) to get \(B' = F^T \cdot B \cdot F \), or \(B = F \cdot B' \cdot F^T \)
 - Get \(D'X' + X' \cdot D' = B' \) for \(X' \) (\(j,k \) = \(B' \cdot (D(j,j) + D(k,k)) \))
2. Solve \(D' \cdot X' = B' \) for \(X' \): \(X'(j,k) = B'(j,k) / (D(j,j) + D(k,k)) \)
3. Perform inverse 2D "FFT" on \(X' = F^T \cdot X' \cdot F \) to get \(X = F \cdot X' \cdot F^T \)

Cost = 2 2D-FFTs plus \(n^2 \) adds, divisions = \(O(n^2 \log n) \)

3D Poisson analogous
Serial Algorithm for the FFT

° Compute the FFT (F*v) of an m-element vector v

\[(F*v)[j] = \sum_{k=0}^{m-1} F(j,k) \cdot v(k) = \sum_{k=0}^{m-1} \varpi^{(j,k)} \cdot v(k) = \sum_{k=0}^{m-1} (\varpi^j)^k \cdot v(k) = V(\varpi^j)\]

where V is defined as the polynomial

\[V(x) = \sum_{k=0}^{m-1} x^k \cdot v(k)\]

Divide and Conquer FFT

° V can be evaluated using divide-and-conquer

\[V(x) = \sum_{k=0}^{m-1} x^k \cdot v(k) = v[0] + x^2 \cdot v[2] + x^4 \cdot v[4] + \ldots + x^{(m/2)-1} \cdot v[(m/2)-1] = V_{even}(x^2) + x \cdot V_{odd}(x^2)\]

° V has degree m-1, so V_{even} and V_{odd} are polynomials of degree m/2-1

° We evaluate these at m points: \((\varpi^j)^2\) for 0 ≤ j ≤ m-1

° But this is really just m/2 different points, since

\[(\varpi^j)(m/2)^2 = (\varpi^j)^m \cdot (\varpi^m)^2 = \varpi^j \cdot \varpi^m = (\varpi^j)^2\]

° So FFT on m points reduced to 2 FFTs on m/2 points

• Divide and conquer!

\[FFT(0,1,2,\ldots,15) = FFT(xxxx)\]
\[FFT(1,3,\ldots,15) = FFT(xxx1)\]
\[FFT(0,2,\ldots,14) = FFT(xxx0)\]
\[FFT(1,3,\ldots,15) = FFT(xxx1)\]
\[FFT(x00) \quad FFT(x10) \quad FFT(x01) \quad FFT(x11)\]
\[FFT(x00) \quad FFT(x10) \quad FFT(x01) \quad FFT(x11)\]

An Iterative Algorithm

° The call tree of the D&C FFT algorithm is a complete binary tree of log m levels

\[FFT(0,1,2,\ldots,15) = FFT(xxxx)\]
\[FFT(0.2,\ldots,14) = FFT(xxx0)\]
\[FFT(1,3,\ldots,15) = FFT(xxx1)\]

° An iterative algorithm that uses loops rather than recursion, does each level in the tree starting at the bottom

• Algorithm overwrites v[i] by \((F*v)[\text{bitreverse}(i)]\)

° Practical algorithms combine recursion (for memory hierarchy) and iteration (to avoid function call overhead) – more later
Parallel 1D FFT

- Data dependencies in 1D FFT
 - Butterfly pattern
 - From $v_{even} = w_v * v_{odd}$
- A PRAM algorithm takes $O(\log m)$ time
 - each step to right is parallel
 - there are $\log m$ steps
- What about communication cost?
 - (See UCB EECS Tech report UCB/CSD-92-713 for details, aka "LogP paper")

Block Layout of 1D FFT

- Using a block layout (m/p contiguous words per processor)
- No communication in last $\log m/p$ steps
- Significant communication in first $\log p$ steps

Cyclic Layout of 1D FFT

- Cyclic layout (consecutive words map to consecutive processors)
- No communication in first $\log(m/p)$ steps
- Communication in last $\log(p)$ steps

Parallel Complexity

- $m =$ vector size, $p =$ number of processors
- $f =$ time per flop = 1
- $\alpha =$ latency for message
- $\beta =$ time per word in a message
- $\text{Time(block FFT)} = \text{Time(cyclic FFT)} = 2*m*\log(m)/p + \log(p) * \alpha + m*\log(p)/p * \beta$
FFT With “Transpose”

° If we start with a cyclic layout for first \(\log(m/p) \) steps, there is no communication.
° Then transpose the vector for last \(\log(p) \) steps.
° All communication is in the transpose.
° Note: This example has \(\log(m/p) = \log(p) \).
° If \(\log(m/p) < \log(p) \) more phases/layouts will be needed.
° We will assume \(\log(m/p) \geq \log(p) \) for simplicity.

Why is the Communication Step Called a Transpose?

° Analogous to transposing an array.
° View as a 2D array of \(m/p \) by \(p \).
° Note: same idea is useful for caches.

Parallel Complexity of the FFT with Transpose

° If no communication is pipelined (overestimate!)
° Time(TransposeFFT) =
 \[2^m \log(m)/p \quad \text{same as before} \]
 \[+ (p-1) \log(p) \quad \text{was } \log(p) \]
 \[+ m^2(p-1)/2 \log(p/p) \quad \text{was } m^2 \log(p)/p \]
° If communication is pipelined, so we do not pay for \(p-1 \) messages, the second term becomes simply \(\alpha \), rather than \((p-1)\alpha \).
° This is close to optimal. See LogP paper for details.
° See also following papers
 - A. Sahai, “Hiding Communication Costs in Bandwidth Limited FFT”
 - R. Nishtala et al, “Optimizing bandwidth limited problems using one-sided communication.”

Sequential Communication Complexity of the FFT

° How many words need to be moved between main memory and cache of size \(M \) to do the FFT of size \(m \), where \(m > M \)?
° Thm (Hong, Kung, 1981): \#words = \(\Omega(m \log m / \log M) \)
° Proof follows from each word of data being reusable only \(\log M \) times.
° Attained by transpose algorithm
 - Sequential algorithm “simulates” parallel algorithm.
 - Imagine we have \(P = m/M \) processors, so each processor stores and works on \(O(M) \) words.
 - Each local computation phase in parallel FFT replaced by similar phase working on cache resident data in sequential FFT.
° Attained by recursive, “cache-oblivious” algorithm (FFTW).
Parallel Communication Complexity of the FFT

- How many words need to be moved between p processors to do the FFT of size m?
- Thm (Aggarwal, Chandra, Snir, 1990): \#words = \Omega(m \log m / (p \log m/p))
 - Proof assumes no recomputation
 - Holds independent of local memory size (which must exceed m/p)
- Does TransposeFFT attain lower bound?
 - Recall assumption: log (m/p) \geq log(p)
 - So 2 \geq \log(m) / \log(m/p) \geq 1
 - So \#words = \Omega(m / p)
 - Attained by transpose algorithm

Comment on the 1D Parallel FFT

- The above algorithm leaves data in bit-reversed order
 - Some applications can use this way, like Poisson
 - Others require another transpose-like operation

- Other parallel algorithms also exist
 - A very different 1D FFT is due to Edelman
 - http://www-math.mit.edu/~edelman
 - Based on the Fast Multipole algorithm
 - Less communication for non-bit-reversed algorithm
 - Approximates FFT

Higher Dimensional FFTs

- FFTs on 2 or more dimensions are defined as 1D FFTs on vectors in all dimensions.
 - 2D FFT does 1D FFTs on all rows and then all columns
- There are 3 obvious possibilities for the 2D FFT:
 - (1) 2D blocked layout for matrix, using parallel 1D FFTs for each row and column
 - (2) Block row layout for matrix, using serial 1D FFTs on rows, followed by a transpose, then more serial 1D FFTs
 - (3) Block row layout for matrix, using serial 1D FFTs on rows, followed by parallel 1D FFTs on columns
 - Option 2 is best, if we overlap communication and computation
- For a 3D FFT the options are similar
 - 2 phases done with serial FFTs, followed by a transpose for 3rd
 - can overlap communication with 2nd phase in practice

Bisection Bandwidth

- FFT requires one (or more) transpose operations:
 - Every processor sends 1/p-th of its data to each other one
- Bisection Bandwidth limits this performance
 - Bisection bandwidth is the bandwidth across the narrowest part of the network
 - Important in global transpose operations, all-to-all, etc.
- “Full bisection bandwidth” is expensive
 - Fraction of machine cost in the network is increasing
 - Fat-tree and full crossbar topologies may be too expensive
 - Especially on machines with 100K and more processors
 - SMP clusters often limit bandwidth at the node level
- Goal: overlap communication and computation
Modified LogGP Model

- LogGP: no overlap
- LogGP: with overlap

EEL: end to end latency (1/2 roundtrip)

g: minimum time between small message sends

G: gap per byte for larger messages

Historical Perspective

- ½ round-trip latency
- Added Latency
- Send Overhead (Alone)
- Send & Rec Overhead
- Rec Overhead (Alone)

- Potential performance advantage for fine-grained, one-sided programs
- Potential productivity advantage for irregular applications

General Observations

- “Overlap” means computing and communicating simultaneously, (or communication with other communication, aka pipelining)
- Rest of slide about comm/comp overlap
- The overlap potential is the difference between the gap and overhead
 - No potential if CPU is tied up throughout message send
 - E.g., no send-side DMA
 - Potential grows with message size for machines with DMA (per byte cost is handled by network, i.e. NIC)
 - Potential grows with amount of network congestion
 - Because gap grows as network becomes saturated
- Remote overhead is 0 for machine with RDMA
- Need good SW support to take advantage of this

GASNet Communications System

GASNet offers put/get communication

- One-sided: no remote CPU involvement required in API (key difference with MPI)
 - Message contains remote address
 - No need to match with a receive
 - No implicit ordering required
- Used in language runtimes (UPC, etc.)
- Fine-grained and bulk transfers
- Split-phase communication
Performance of 1-Sided vs 2-sided Communication: GASNet vs MPI

NAS FT Benchmark Case Study

Performance of Exchange (All-to-all) is critical
- Communication to computation ratio increases with faster, more optimized 1-D FFTs (used best available, from FFTW)
- Determined by available bisection bandwidth
- Between 30-40% of the application’s total runtime

Assumptions
- 1D partition of 3D grid
- At most N processors for N^3 grid
- HPC Challenge benchmark has large 1D FFT (can be viewed as 3D or more with proper roots of unity)

Reference for details
- "Optimizing Bandwidth Limited Problems Using One-side Communication and Overlap", C. Bell, D. Bonachea, R. Nishtala, K. Yelick, IPDPS’06 (www.eecs.berkeley.edu/~rajashn)
- Started as CS267 project

Performing a 3D FFT (1/3)
- NX x NY x NZ elements spread across P processors
- Will Use 1-Dimensional Layout in Z dimension
 - Each processor gets NZ / P "planes" of NX x NY elements per plane

Example: P = 4

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick
Performing a 3D FFT (2/3)

- Perform an FFT in all three dimensions
- With 1D layout, 2 out of the 3 dimensions are local while the last Z dimension is distributed

Step 1: FFTs on the columns (all elements local)
Step 2: FFTs on the rows (all elements local)
Step 3: FFTs in the Z-dimension (requires communication)

The Transpose

- Each processor has to scatter input domain to other processors
 - Every processor divides its portion of the domain into P pieces
 - Send each of the P pieces to a different processor

- Three different ways to break it up the messages
 1. Packed Slabs (i.e. single packed "All-to-all" in MPI parlance)
 2. Slabs
 3. Pencils

- Going from approach Packed Slabs to Slabs to Pencils leads to
 - An order of magnitude increase in the number of messages
 - An order of magnitude decrease in the size of each message

- Why do this? Slabs and Pencils allow overlapping communication and computation and leverage RDMA support in modern networks

Performing the 3D FFT (3/3)

- Can perform Steps 1 and 2 since all the data is available without communication
- Perform a Global Transpose of the cube
 - Allows step 3 to continue

Algorithm 1: Packed Slabs

Example with P=4, NX=NY=NZ=16

1. Perform all row and column FFTs
2. Perform local transpose
 - data destined to a remote processor are grouped together
3. Perform P puts of the data

- For 512^3 grid across 64 processors
 - Send 64-1 messages of 512kB each
Bandwidth Utilization

- NAS FT (Class D) with 256 processors on Opteron/InfiniBand
 - Each processor sends 256 messages of 512kBytes
 - Global Transpose (i.e. all to all exchange) only achieves 67% of peak point-to-point bidirectional bandwidth
 - Many factors could cause this slowdown
 - Network contention
 - Number of processors with which each processor communicates

Can we do better?
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 2: Slabs

- Waiting to send all data in one phase bunches up communication events

Algorithm Sketch
- for each of the NZ/P planes
 - Perform all column FFTs
 - for each of the P "slabs" (a slab is NX/P rows)
 - Perform FFTs on the rows in the slab
 - Initiate 1-sided put of the slab
 - Wait for all puts to finish
 - Barrier
- Non-blocking RDMA puts allow data movement to be overlapped with computation.
- Puts are spaced apart by the amount of time to perform FFTs on NX/P rows

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 3: Pencils

- Further reduce the granularity of communication
 - Send a row (pencil) as soon as it is ready

Algorithm Sketch
- For each of the NZ/P planes
 - Perform all 16 column FFTs
 - For r=0; r< NX/P; r++
 - For each slab s in the plane
 - Perform FFT on row r of slab s
 - Initiate 1-sided put of row r
 - Wait for all puts to finish
 - Barrier
- Large increase in message count
- Communication events finely diffused through computation
 - Maximum amount of overlap
 - Communication starts early

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Communication Requirements

- 512³ across 64 processors
 - Alg 1: Packed Slabs
 - Send 64 messages of 512kB
 - Alg 2: Slabs
 - Send 512 messages of 64kB
 - Alg 3: Pencils
 - Send 4096 messages of 8kB

With Slabs GASNet is slightly faster than MPI
GASNet achieves close to peak bandwidth with Pencils but MPI is about 50% less efficient at 8k
More overlap possible with 8k messages

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick
Platforms

<table>
<thead>
<tr>
<th>Name</th>
<th>Processor</th>
<th>Network</th>
<th>Software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opteron/Infiniband</td>
<td>Dual 2.2 GHz Opteron (320 nodes @ 4GB/node)</td>
<td>Mellanox Cougar InfiniBand 4x HCA</td>
<td>Linux 2.6.5, Mellanox UPI, MvAPICH 0.9.5, Pathscale CC/FF7 2.0</td>
</tr>
<tr>
<td>"Jacquard" @ NERSC</td>
<td>Quad 2.2 GHz Opteron (320 nodes @ 4GB/node)</td>
<td>Mellanox Cougar InfiniBand 4x HCA</td>
<td>Linux 2.6.5, Mellanox UPI, MvAPICH 0.9.5, Pathscale CC/FF7 2.0</td>
</tr>
<tr>
<td>Alpha/Elan3</td>
<td>Quad 1 GHz Alpha 21264 (750 nodes @ 4GB/node)</td>
<td>Quadrics QxNet1 Elan3 Fdual rail (one rail used)</td>
<td>Tru64 v5.1, Elan3 Ixelan 1.4-20, Compaq C V6.5-303, HP Forta Compiler X5.5A-493S-48E1K</td>
</tr>
<tr>
<td>"Lemieux" @ PSC</td>
<td>Quad 1 GHz Alpha 21264 (750 nodes @ 4GB/node)</td>
<td>Quadrics QxNet1 Elan3 Fdual rail (one rail used)</td>
<td>Tru64 v5.1, Elan3 Ixelan 1.4-20, Compaq C V6.5-303, HP Forta Compiler X5.5A-493S-48E1K</td>
</tr>
<tr>
<td>Itanium2/Elan4</td>
<td>Quad 1.4 GHz Itanium2 (1024 nodes @ 8GB/node)</td>
<td>Quadrics QxNet2 Elan4</td>
<td>Linux 2.4.21-chaos, Elan3 Ixelan 1.8.14, Intel Fort 8.1.025, icc 8.1.029</td>
</tr>
<tr>
<td>"Thunder" @ LLNL</td>
<td>Dual 3.0 GHz Pentium 4 Xeon (64 nodes @ 3GB/node)</td>
<td>Myricom Myrinet 2000 M3S-PCIE4B</td>
<td>Linux 2.6.13, GM 2.0.19, Intel Fort 8.1-20050207Z, icc 8.1-20050207Z</td>
</tr>
<tr>
<td>P4/Myrinet</td>
<td>Dual 3.0 GHz Pentium 4 Xeon (64 nodes @ 3GB/node)</td>
<td>Myricom Myrinet 2000 M3S-PCIE4B</td>
<td>Linux 2.6.13, GM 2.0.19, Intel Fort 8.1-20050207Z, icc 8.1-20050207Z</td>
</tr>
</tbody>
</table>

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Comparison of Algorithms

* Compare 3 algorithms against original NAS FT
 - All versions including Fortran use FFTW for local 1D FFTs
 - Largest class that fit in the memory (usually class D)
* All UPC flavors outperform original Fortran/MPI implementation by at least 20%
 - One-sided semantics allow even exchange based implementations to improve over MPI implementations
 - Overlap algorithms spread the messages out, easing the bottlenecks
 - ~1.9x speedup in the best case

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Time Spent in Communication

* Implemented the 3 algorithms in MPI using Irecv and Isend

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Performance Summary

* Best NAS Fortran/MPI
* Best MPI (always Slabs)
* Best UPC (always Pencils)

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick
FFT Performance on BlueGene/P

- PGAS implementations consistently outperform MPI.
- Leveraging communication/computation overlap yields the best performance.
- More collectives in flight and more communication leads to better performance.
- At 32k cores, overlap algorithms yield 17% improvement in overall application time.
- Numbers are getting close to HPC record.
- Future work to try to beat the record.

![Graph showing FFT performance on BlueGene/P](image)

FFT Performance on Cray XT4 (Franklin)

- 1024 Cores of the Cray XT4.
- Uses FFTW for local FFTs.
- Larger the problem size more effective the overlap.

![Graph showing FFT performance on Cray XT4](image)

FFT – Fastest Fourier Transform in the West

* www.fftw.org

* Produces FFT implementation optimized for:
 - Your version of FFT (complex, real, ...
 - Your value of n (arbitrary, possibly prime)
 - Your architecture
 - Very good sequential performance (competes with Spiral)

* Similar in spirit to PHIPAC/ATLAS/OSKI/Sparsity

* Won 1999 Wilkinson Prize for Numerical Software

* Widely used:
 - Latest version 3.3.4 (Mar 2014), includes threads, OpenMP
 - Added MPI versions in v3.3 Beta 1 (June 2011)
 - Layout constraints from users/apps + network differences are hard to support

![FFTW logo](image)

- C library for real & complex FFTs (arbitrary size/dimensionality)
 (+ parallel versions for threads & MPI)

- Computational kernels (80% of code) automatically generated

- Self-optimizes for your hardware (picks best composition of steps)
 = portability + performance

free software: http://www.fftw.org/
FFTW performance
power-of-two sizes, double precision

833 MHz Alpha EV6
2 GHz PowerPC G5
2 GHz AMD Opteron
500 MHz Ultrasparc Ile

FFTW performance
non-power-of-two sizes, double precision

unusual: non-power-of-two sizes receive as much optimization as powers of two

…because we let the code do the optimizing

Why is FFTW fast?
three unusual features

FFTW implements many FFT algorithms:
A planner picks the best composition by measuring the speed of different combinations.
The resulting plan is executed with explicit recursion: enhances locality

The base cases of the recursion are codelets:
highly-optimized dense code automatically generated by a special-purpose “compiler”
FFTW is easy to use

```c
{  complex x[n];
  plan p;
  p = plan_dft_1d(n, x, x, FORWARD, MEASURE);
  ...  
  execute(p); /* repeat as needed */  
  ...  
  destroy_plan(p);
}
```

Key fact: usually, many transforms of same size are required.

Why is FFTW fast?

three unusual features

1. FFTW implements many FFT algorithms:
 A planner picks the best composition by measuring the speed of different combinations.
 The resulting plan is executed with explicit recursion: enhances locality

2. The base cases of the recursion are codelets: highly-optimized dense code automatically generated by a special-purpose “compiler”

3. FFTW uses natural recursion

 - Size 8 DFT
 - \(p = 2 \) (radix 2)
 - Size 4 DFT
 - Size 4 DFT
 - Size 2 DFT
 - Size 2 DFT
 - Size 2 DFT
 - Size 2 DFT

 But traditional implementation is non-recursive, breadth-first traversal:
 \(\log_2 n \) passes over whole array

 Traditional cache solution: Blocking

 - Size 8 DFT
 - \(p = 2 \) (radix 2)
 - Size 4 DFT
 - Size 2 DFT
 - Size 2 DFT
 - Size 4 DFT
 - Size 2 DFT
 - Size 2 DFT
 - Size 4 DFT
 - Size 2 DFT
 - Size 2 DFT

 breadth-first, but with blocks of size = cache

 …requires program specialized for cache size
Recursive Divide & Conquer is Good

(depth-first traversal) [Singleton, 1967]

eventually small enough to fit in cache …no matter what size the cache is

Why is FFTW fast?

three unusual features

1. FFTW implements many FFT algorithms: A planner picks the best composition by measuring the speed of different combinations.

 The resulting plan is executed with explicit recursion: enhances locality

2. The base cases of the recursion are codelets: highly-optimized dense code automatically generated by a special-purpose "compiler"

 • Software/Hardware Generation for DSP Algorithms
 • Autotuning not just for FFT, many other signal processing algorithms
 • Autotuning not just for software implementation, hardware too
 • More details at
 • www.spiral.net
 • On-line generators, papers available

Cache Obliviousness

• A cache-oblivious algorithm does not know the cache size — it can be optimal for any machine & for all levels of cache simultaneously

• Exist for many other algorithms, too [Frigo et al. 1999] — all via the recursive divide & conquer approach

Spiral
Motifs – so far this semester

The Motifs (formerly “Dwarfs”) from “The Berkeley View” (Asanovic et al.)

Motifs form key computational patterns

Rest of the semester

° Computational Astrophysics (Julian Borrill, LBNL)
° Dynamic Load Balancing (TBD)
° Climate Modeling (Michael Wehner, LBNL)
° Computational Materials Science (Kristin Persson, LBNL)
° Future of Exascale Computing (Kathy Yelick, UCB & LBNL)