Dense Linear Algebra:!

Parallel Matrix Multiplication”

www.cs.berkeley.edu/~demmel/cs267_Spr15

02/26/2015

CS 267!

History and Structure,!

James Demmel

CS267 Lecture 12

Quick review of earlier lecture

¥What do you call

¥A program written in PyGAS, a Global Address
Space language based on PythonE

¥That uses a Monte Carlo simulation algorithm to
approximate ! E

¥That has a race condition, so that it gives you a
different funny answer every time you run it?

Monte - ! - thon

02/26/2015 CS267 Lecture 12

Outline

¥ History and motivation

¥Wha
¥Why

t is dense linear algebra?
minimize communication?

¥Lower bound on communication
¥ Structure of the Dense Linear Algebra motif

¥Wha
¥ Parallel
¥ Attai

t does A\b do?
Matrix-matrix multiplication
ning the lower bound

¥ Other Parallel Algorithms (next lecture)

02/26/2015

CS267 Lecture 12

Outline

CS267 Lecture 2

¥ History and motivation
¥What is dense linear algebra?
¥Why minimize communication?
¥Lower bound on communication

02/26/2015 CS267 Lecture 12

Dense Matrix []

Motifs

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)
Motifs form key computational patterns

& el

Health | h Music Browser

Games
ML

O
w
o
2]

HPC

Finite State Mach.
Circuits
Graph Algorithms

Spectral (FFT)
Dynamic Prog
N-Body
Backtrack/ B&B
Graphical Models
Unstructured Grid

What is dense linear algebra?

¥ Not just matmul!
¥ Linear Systems: Ax=b
¥ Least Squares: choose x to minimize ||Ax-b||,
¥ Overdetermined or underdetermined
¥ Unconstrained, constrained, weighted
¥ Eigenvalues and vectors of Symmetric Matrices
¥ Standard (Ax = "x), Generalized (Ax="Bx)
¥ Eigenvalues and vectors of Unsymmetric matrices
¥ Eigenvalues, Schur form, eigenvectors, invariant subspaces
¥ Standard, Generalized
¥ Singular Values and vectors (SVD)
¥ Standard, Generalized
¥ Different matrix structures
¥ Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded E
¥ Level of detail
¥ Simple Driver (Ox=A\bO)
¥ Expert Drivers with error bounds, extra-precision, other options

¥ Lower level routines (“apply certain kind of orthogonal transformation”, matmulE)
02/26/2015 CS267 Lecture 13 6

A brief history of (Dense) Linear Algebra software (1/7)

¥In the beginning was the do-loopE
¥Libraries like EISPACK (for eigenvalue problems)
¥Then the BLAS (1) were invented (1973-1977)
¥Standard library of 15 operations (mostly) on vectors
¥ “AXPY” (y=#%+y), dot product, scale (x = #%), etc
¥ Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
¥Goals
¥ Common “pattern” to ease programming, readability

¥ Robustness, via careful coding (avoiding over/underflow)
¥ Portability + Efficiency via machine specific implementations

¥Why BLAS 1 ? They do O(n') ops on O(n') data
¥Used in libraries like LINPACK (for linear systems)
¥ Source of the name “LINPACK Benchmark” (not the code!)

02/26/2015 CS267 Lecture 12 7

CS267 Lecture 2

Current Records for Solving Dense Systems (11/2014)

¥Linpack Benchmark
¥Fastest machine overall (www.top500.0rg)
¥ Tianhe-2 (Guangzhou, China)
¥ 33.9 Petaflops out of 54.9 Petaflops peak (n=10M)
¥ 3.1M cores, of which 2.7M are accelerator cores
¥Intel Xeon E5-2692 (lvy Bridge) and
Xeon Phi 31S1P
¥ 1 Pbyte memory
¥ 17.8 MWatts of power, 1.9 Gflops /Watt

¥ Historical data (www.netlib.org /performance)
¥ Palm Pilot Il
¥ 1.69 Kiloflops
¥ n=100

02/26/2015 CS267 Lecture 12 8

A brief history of (Dense) Linear Algebra software (2/7)

¥But the BLAS-1 weren’ t enough
¥Consider AXPY (y =#% +y): 2n flops on 3n read/writes
¥Computational intensity = (2n)/(3n) = 2/3
¥Too low to run near peak speed (read/write dominates)
¥Hard to vectorize (“SIMD’ ize”) on supercomputers of
the day (1980s)
¥So the BLAS-2 were invented (1984-1986)
¥Standard library of 25 operations (mostly) on matrix/
vector pairs
¥ “GEMV”:y = #3A$x 498x, “GER”: A = A + #$x$y, x = T1$x
¥ Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
¥Why BLAS 2 ? They do O(n?) ops on O(n?) data
¥So computational intensity still just ~(2n?)/(n2) = 2

¥ OK for vector machines, but not for machine with caches
02/26/2015 CS267 Lecture 12 9

A brief history of (Dense) Linear Algebra software (3/7)

¥The next step: BLAS-3 (1987-1988)
¥ Standard library of 9 operations (mostly) on matrix/matrix pairs
¥ “GEMM”: C = #AB +496C, C =#AA + %8G, B =T'1$B
¥ Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
¥Why BLAS 3 ? They do O(n®) ops on O(n?) data
¥ So computational intensity (2n3)/(4n?) = n/2 B big at last!
¥ Good for machines with caches, other mem. hierarchy levels
¥How much BLAS1/2/3 code so far (all at www.netlib.org/blas)
¥ Source: 142 routines, 31K LOC, Testing: 28K LOC
¥ Reference (unoptimized) implementation only
¥ Ex: 3 nested loops for GEMM
¥ Lots more optimized code (eg Homework 1)
¥ Motivates “automatic tuning” of the BLAS
¥Part of standard math libraries (eg AMD ACML, Intel MKL)

02/26/2015 CS267 Lecture 12 10

Level 1 BLAS
4

SUBROVTIVE x80TS (

HER2K UPLD, TRARS,
TR (SIDE, (PLO, TRANSA,
TRSY (SIDE, UPLO, TRANSA,

CS267 Lecture 2

A brief history of (Dense) Linear Algebra software (4/7)

¥ LAPACK B “Linear Algebra PACKage” - uses BLAS-3 (1989 B now)
¥ Ex: Obvious way to express Gaussian Elimination (GE) is adding
multiples of one row to other rows B BLAS-1
¥ How do we reorganize GE to use BLAS-3 ? (details later)
¥ Contents of LAPACK (summary)
¥ Algorithms that are (nearly) 100% BLAS 3
— Linear Systems: solve Ax=b for x

— Least Squares: choose x to minimize ||Ax-b||,
¥ Algorithms that are only =50% BLAS 3
— Eigenproblems: Find A and x where Ax = A x
— Singular Value Decomposition (SVD)
* Generalized problems (eg Ax = A Bx)
¥ Error bounds for everything
¥ Lots of variants depending on A’ s structure (banded, A=AT, etc)
¥ How much code? (Release 3.5.0, Nov 2013) (www.netlib.org/lapack)
¥ Source: 1740 routines, 704K LOC, Testing: 1096 routines, 467K LOC
¥ Ongoing development (at UCB and elsewhere) (class projects!)
¥ Next planned release June 2015 12

A brief history of (Dense) Linear Algebra software (5/7)

¥|s LAPACK parallel?
¥Only if the BLAS are parallel (possible in shared memory)
¥ScalLAPACK D “Scalable LAPACK” (1995 D now)
¥For distributed memory B uses MPI
¥More complex data structures, algorithms than LAPACK
¥ Only (small) subset of LAPACK’ s functionality available
¥ Detalls later (class projects!)

¥All at www.netlib.org/scalapack

02/26/2015 CS267 Lecture 12 13

Success Stories for Sca/L APACK _ (6/7)
¥ Widely used AT B
¥ Adopted by Mathworks, Cray, natl]jre

Fujitsu, HP, IBM, IMSL, Intel,
NAG, NEC, SGI, E
¥7.5M webhits/year @ Netlib
(incl. CLAPACK, LAPACK95)
¥ New Science discovered through the
solution of dense matrix systems
¥ Nature article on the flat
universe used ScaLAPACK

¥ Other articles in Physics CosrRic Miqrov&ggﬁg%(gr%und
- . nalysis, an
Review B that also use it collaboratign,é\/IAg&)%P; code (Apr.
7, .

¥1998 Gordon Bell Prize

¥www.nersc.gov/news/reports/
newNERSCresults050703.pdf

02/26/2015 CS267 Lecture 12 14

A brief future look at (Dense) Linear Algebra software (7/7)
¥PLASMA, DPLASMA and MAGMA (now)
¥0Ongoing extensions to Multicore/GPU/Heterogeneous
¥Can one software infrastructure accommodate all algorithms
and platforms of current (future) interest?

¥ How much code generation and tuning can we automate?
¥Details later (Class projects!) (icl.cs.utk.edu/{{d}plasma,magma})
¥ Other related projects
¥Elemental (libelemental.org)

¥ Distributed memory dense linear algebra

¥ OBalance ease of use and high performanceO
¥FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)

¥ Formal Linear Algebra Method Environment

¥ Attempt to automate code generation across multiple platforms
¥BLAST Forum (www.netlib.org/blas/blast-forum)

¥ Attempt to extend BLAS, add new functions, extra-precision, E

Back to basics:
Why avoiding communication is important (1/3)

Algorithms have two costs:
1.Arithmetic (FLOPS)

2.Communication: moving data between
¥levels of a memory hierarchy (sequential case)
¥processors over a network (parallel case).

i1

02/26/2015 CS267 Lecture 12 16

CS267 Lecture 2

Why avoiding communication is important (2/3)

¥ Running time of an algorithm is sum of 3 terms:
¥ # flops * time_per_flop
¥ # words moved / bandwidth communication

¥ # messages * latency
¥ Time_per_flop << 1/ bandwidth << latency

¥ Gaps growing exponentially with time

Annual improvements
Time_per_flop Bandwidth Latency
DRAM 26% 15%
59%
Network 23% 5%

¥ Minimize communication to save time

0212612015 CS267 Lecture 12 17

Why Minimize Communication? (3/3)

1000

Picojoules
=
8

mnow (45nm)

m 2018 (11nm in this case)

& & Source: John Shalf, LBL

Why Minimize Communication? (3/3)

Minimize communication to save energy

10000

Off-chip

Picojoules
=
8

= now (45nm)
10 ® 2018 (11nm in this case)
1 -
N
QQ((& & & .\Q Q} ‘_)(,
RO
& & Source: John Shalf, LBL

Goal:
Organize Linear Algebra to Avoid Communication

¥ Between all memory hierarchy levels
¥ L1<«— L2 < DRAM < network, etc

¥ Not just hiding communication (overlap with arithmetic)
¥ Speedup = 2X

¥ Arbitrary speedups/energy savings possible

¥ Later: Same goal for other computational patterns
¥ Lots of open problems

02/26/2015 CS267 Lecture 12 20

CS267 Lecture 2

Review: Blocked Matrix Multiply

¥Blocked Matmul C = A$B breaks A, B and C into blocks
with dimensions that depend on cache size

E Break A ™, B, C™n into bxb blocks labeled A(i,j), etc
E b chosen so 3 bxb blocks fit in cache
fori=1ton/b, forj=1ton/b, fork=1ton/b
C(i,j) = C(i,j) + AGi,k)$B(k,j) E b x b matmul, 4b 2 reads/writes

¥ When b=1, get OnasveO algorithm, want b larger E
¥ (n/b)® $ 417 = 4n’/b reads/writes altogether
¥ Minimized when 3b? = cache size = M, yielding O(n3/M¥2) reads/writes

¥ What if we had more levels of memory? (L1, L2, cache etc)?
¥ Would need 3 more nested loops per level
¥ Recursive (cache-oblivious algorithm) also possible

02/26/2015 CS267 Lecture 12 21

Communication Lower Bounds: Prior Work on Matmul

¥Assume n3 algorithm (i.e. not Strassen-like)
¥ Sequential case, with fast memory of size M
¥Lower bound on #words moved to/from slow memory =
Q (n®/M¥2) [Hong, Kung, 81]
¥ Attained using blocked or cache-oblivious algorithms

¥ Parallel case on P processors:
¥Let M be memory per processor; assume load balanced
¥Lower bound on #words moved
=Q (n3/(p $ M/2)) [Irony, Tiskin, Toledo, 04]
¥1f M = 3n%/p (one copy of each matrix), then
lower bound = Q (n? /p1/2)
¥ Attained by SUMMA, Cannon’ s algorithm

02/26/2015 CS267 Lecture 12 22

New lower bound for all “direct ” linear algebra

Let M = “fast” memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor

#words_moved per processor = Q(#flops / M1/2)

#messages_sent per processor = Q (#flops / M3/2)

¥ Holds for
¥ Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, E
¥ Some whole programs (sequences of these operations,
no matter how they are interleaved, eg computing A¥)
¥ Dense and sparse matrices (where #flops << n3)
¥ Sequential and parallel algorithms
¥ Some graph-theoretic algorithms (eg Floyd-Warshall)

¥ Generalizations later (Strassen-like algorithms, loops accessing arrays)
02/26/2015 CS267 Lecture 12 23

New lower bound for all _“direct ” linear algebra

Let M = “fast” memory size per processor
= cache size (sequential case) or O(n?/p) (parallel case)
#flops = number of flops done per processor

#words_moved per processor = Q(#flops / M1/2)

#messages_sent per processor = Q (#flops / M3/2)

¥ Sequential case, dense n x n matrices, so O(n3) flops
¥ #words_moved = Q(n3/ M¥2)
¥ #imessages_sent = Q(n3/ M32)
¥ Parallel case, dense n x n matrices
¥ Load balanced, so O(n3/p) flops processor
¥ One copy of data, load balanced, so M = O(n?/p) per processor
¥#words_moved = Q% pY2) g A\ Linear Algebra Prize, 2012

¥ #messages_sent = Q(pl/2)
02/26/2015 CS267 Lecture 12 24

CS267 Lecture 2

Can we attain these lower bounds?
¥ Do conventional dense algorithms as implemented in LAPACK and
ScalLAPACK attain these bounds?
¥ Mostly not yet, work in progress
¥ If not, are there other algorithms that do?
¥Yes
¥ Goals for algorithms:
¥ Minimize #words_moved
¥ Minimize #messages_sent
¥ Need new data structures
¥ Minimize for multiple memory hierarchy levels
¥ Cache-oblivious algorithms would be simplest
¥ Fewest flops when matrix fits in fastest memory
¥ Cache-oblivious algorithms donOt always attain this
¥ Attainable for nearly all dense linear algebra
¥ Just a few prototype implementations so far (class projects!)
¥ Only a few sparse algorithms so far (eg Cholesky)

02/26/2015 CS267 Lecture 12 25

Outline

¥History and motivation
¥What is dense linear algebra?
¥Why minimize communication?
¥Lower bound on communication

¥ Structure of the Dense Linear Algebra motif
¥What does A\b do?

¥ Parallel Matrix-matrix multiplication
¥Attaining the lower bound
¥Proof of the lower bound (if time)

¥ Other Parallel Algorithms (next lecture)

02/26/2015 CS267 Lecture 12

26

What could go into the linear algebra motif(s)?

For all linear algebra problems

For all matrix/problem structures

For all data types

For all architectures and networks
For all programming interfaces
Produce best algorithm(s) w.r.t.

performance and/or accuracy
(including error bounds, etc)

Need to prioritize, automate!
02/26/2015 CS267 Lecture 12 27

CS267 Lecture 2

Ex: LAPACK Table of Contents

¥ Linear Systems
¥ Least Squares
¥ Overdetermined, underdetermined
¥ Unconstrained, constrained, weighted
¥ Eigenvalues and vectors of Symmetric Matrices
¥ Standard (Ax = "x), Generalized (Ax="Bx)
¥ Eigenvalues and vectors of Unsymmetric matrices
¥ Eigenvalues, Schur form, eigenvectors, invariant subspaces
¥ Standard, Generalized
¥ Singular Values and vectors (SVD)
¥ Standard, Generalized
¥ Level of detail
¥ Simple Driver
¥ Expert Drivers with error bounds, extra-precision, other options
¥ Lower level routines (“apply certain kind of orthogonal transformation”)

02/26/2015 CS267 Lecture 12

28

What does A\b do? What could it do?

Ex: LAPACK Table of Contents

¥ BD b bidiagonal

¥ GB b general banded

¥ GE b general

¥ GG b general , pair

¥ GT D tridiagonal

¥ HB b Hermitian banded

¥ HE D Hermitian

¥ HG b upper Hessenberg, pair
¥ HP b Hermitian, packed

¥ HS D upper Hessenberg

¥ OR D (real) orthogonal

¥ OP b (real) orthogonal, packed
¥ PB b positive definite, banded
¥ PO b positive definite

¥ PP D positive definite, packed
¥ PT B positive definite, tridiagonal

¥ SB B symmetric, banded
¥ SP B symmetric, packed
¥ ST B symmetric, tridiagonal
¥ SY B symmetric

¥ TB b triangular, banded
¥ TG b triangular, pair

¥ TP D triangular, packed
¥ TR B triangular

¥ TZ D trapezoidal

¥ UN D unitary

¥ UP D unitary packed

02/26/2015 CS267 Lecture 12

29

_What does A\b do? What could itdo?
Ex: LAPACK Table of Contents

¥ BD b bidiagonal

¥ GB b general banded

¥ GE D general

¥ GG b general , pair

¥ GT b tridiagonal

¥ HB b Hermitian banded

¥ HE D Hermitian

¥ HG b upper Hessenberg, pair
¥ HP b Hermitian, packed

¥ HS D upper Hessenberg

¥ OR D (real) orthogonal

¥ OP b (real) orthogonal, packed
¥ PB b positive definite, banded
¥ PO b positive definite

¥ PP D positive definite, packed
¥ PT B positive definite, tridiagonal

¥ SB B symmetric, banded
¥ SP b symmetric, packed
¥ ST D symmetric, tridiagonal
¥ SY B symmetric

¥ TB D triangular, banded
¥ TG b triangular, pair

¥ TP D triangular, packed
¥ TR b triangular

¥ TZ b trapezoidal

¥ UN D unitary

¥ UP D unitary packed

What does A\b do? What could it do?

Ex: LAPACK Table of Contents

¥ BD D bidiagonal

¥ GB b general banded

¥ GE D general

¥ GG b general, pair

¥ GT D tridiagonal

¥ HB B Hermitian banded

¥ HE b Hermitian

¥ HG b upper Hessenberg, pair
¥ HP B Hermitian, packed

¥ HS D upper Hessenberg

¥ OR D (real) orthogonal

¥ OP b (real) orthogonal, packed
¥ PB b positive definite, banded
¥ PO b positive definite

¥ PP D positive definite, packed
¥ PT b positive definite, tridiagonal

¥ SB B symmetric , banded
¥ SP B symmetric , packed
¥ ST D symmetric, tridiagonal
¥ SY B symmetric

¥ TB b triangular, banded
¥ TG b triangular, pair

¥ TP D triangular, packed

¥ TR B triangular

¥ TZ D trapezoidal

¥ UN D unitary

¥ UP b unitary packed

02/26/2015 CS267 Lecture 12

31

CS267 Lecture 2

02/26/2015 CS267 Lecture 12 30
—What does A\b do? What could itdo?
Ex: LAPACK Table of Contents
¥ BD b bidiagonal ¥ SB b symmetric, banded
¥ GB b general banded ¥ SP B symmetric, packed
¥ GE b general ¥ ST D symmetric, tridiagonal
¥ GG b general, pair ¥ SY D symmetric
¥ GT b tridiagonal ¥ TB D triangular, banded
¥ HB D Hermitian banded ¥ TG b triangular, pair
¥ HE b Hermitian ¥ TP D triangular, packed
¥ HG b upper Hessenberg, pair ¥ TR b triangular
¥ HP b Hermitian, packed ¥ TZ D trapezoidal
¥ HS b upper Hessenberg ¥ UN D unitary
¥ OR D (real) orthogonal ¥ UP D unitary packed
¥ OP b (real) orthogonal, packed
¥ PB b positive definite , banded
¥ PO D positive definite
¥ PP D positive definite , packed
¥ PT B positive definite , tridiagonal
02/26/2015 CS267 Lecture 12 32

What does A\b do? What could it do?

Ex: LAPACK Table of Contents

¥ BD b bidiagonal ¥ SB B symmetric, banded
¥ GB b general banded ¥ SP B symmetric, packed
¥ GE b general ¥ ST D symmetric, tridiagonal
¥ GG b general, pair ¥ SY D symmetric

¥ GT b tridiagonal ¥ TB D triangular, banded
¥ HB b Hermitian banded ¥ TG b triangular, pair

¥ HE D Hermitian ¥ TP D triangular, packed
¥ HG b upper Hessenberg, pair ¥ TR B triangular

¥ HP b Hermitian, packed ¥ TZ b trapezoidal

¥ HS D upper Hessenberg ¥ UN D unitary

¥ OR D (real) orthogonal ¥ UP D unitary packed

¥ OP D (real) orthogonal, packed

¥ PB b positive definite, banded

¥ PO b positive definite

¥ PP D positive definite, packed

¥ PT B positive definite, tridiagonal

02/26/2015 CS267 Lecture 12 33

Organizing Linear Algebra B in books

ScalAPACK Users' Gui

LAPACK
L-A P-A C-K > APF |
LAPA-<CK g
L-AP-ACK \ 1:| .
LA-P-ACK AD
L-A-P A CK

Users' Guide | RR

Www.netiib.orgllapack

Templates =
‘Builing Blocks for Leretive Methods

gams.nist.gov

www.netlib.org /templates www.cs.utk.edu /~dongarra /etemplates

Outline

¥ History and motivation
¥What is dense linear algebra?
¥Why minimize communication?
¥Lower bound on communication
¥ Structure of the Dense Linear Algebra motif
¥What does A\b do?
¥ Parallel Matrix-matrix multiplication
¥ Attaining the lower bound
¥Other Parallel Algorithms (next lecture)

02/26/2015 CS267 Lecture 12 35

Different Parallel Data L ayouts for Matrices (not all!)

www.netlib.org/scalapack

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

b
3) 1D Column Block Cyclic Layout

TTOTIOTIIOTT
0|1 Tofootr .
Generalizes others
TTOTIOTTIOTT
2 3]
TTOTIOTTIOTT
6) 2D Row and Column
5) 2D Row and Column Blocked Layout Block Cyclic Layout
02/26/2015 CS267 Lecture 12 36

CS267 Lecture 2

Parallel Matrix-Vector Product Matrix-Vector Product y =y + A*x
¥Compu.te y =y + A, where Ais a dense matrix ¥A column layout of the matrix eliminates the broadcast of x
¥Lagfgtr'ow blocked ¥But adds a reduction to update the destination y
¥ A() refers to the n by n/p block row ¥A 2D blocked layout uses a broadcast and reduction, both
that processor i owns, PO PL P2 P3 on a subset of processors _
¥x(i) and y(i) similarly refer to e ¥sart(p) for square processor grid
segments of x,y owned by i A0) PO | POl PLi P2 - |
¥ Algorithm: Y A1) Pl M Trol pil P2 17a
¥ Foreach processor i AQ2) p2
¥ Broadcast X(I) R P4 P5! P6 ! P7
¥ Compute y(i) = AG)*x i AB) P3
¥ Algorithm uses the formula P8{ P9 | P10| P11
N = 1 N*y = 1 1 1)* i PR o
02/26/2015 CS267 Lecture 12 37 02/26/2015 B .08267 Lecture 12 38
Parallel Matrix Multiply Matrix Multiply with 1D Column Layout
¥Computing C=C+A*B ¥ Assume matrices are n x n and n is divisible by p
¥ Using basic algorithm: 2*n3 Flops
¥Variables are: May be a reasonable
¥Data layout: 1D? 2D? Other? 190 [p1 [p2 03 [p4 o5 o6 [p7 assumption for analysis,
¥Topology of machine: Ring? Torus? not for code
¥Scheduling communication
¥ A(i) refers to the n by n/p block column that processor i
¥Use of performance models for algorithm design owns (similiarly for B(i) and C(i))
¥ Message Time = “latency ” + #words * time-per-word ¥B(i,j) is the n/p by n/p sublock of B(i)
= o+ n*p ¥in rows j*n/p through (j+1)*n/p - 1
¥ Efficiency (in any model): ¥ Algorithm uses the formula
¥gserial time / (p * parallel time) C(i) = C(i) + A*B(i) = C(i) + Z; A()*B(,)
¥perfect (linear) speedup <= efficiency = 1
02/26/2015 CS267 Lecture 12 39 02/26/2015 CS267 Lecture 12 40

CS267 Lecture 2

Matrix Multiply: 1D Layout on Bus or Ring

¥ Algorithm uses the formula
C(i) = C(i) + A*B(i) = C(i) + % AG)*B(j,i)

¥First consider a bus-connected machine without
broadcast: only one pair of processors can
communicate at a time (ethernet)

¥ Second consider a machine with processors on a ring:

all processors may communicate with nearest neighbors
simultaneously

02/26/2015 CS267 Lecture 12 41

MatMul: 1D layout on Bus without Broadcast

Naeve algorithm:
C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)
fori=0to p-1
forj=0to p-1 except i
if (myproc == i) send A(i) to processor j
if (myproc ==)
receive A(i) from processor i
C(myproc) = C(myproc) + A(i)*B(i,myproc)
barrier

Cost of inner loop:
computation: 2*n*(n/p)?2 = 2*n3/p?
communication: o + f*n? /p

02/26/2015 CS267 Lecture 12 42

Naeve MatMul (continued)

Cost of inner loop:

computation: 2*n*(n/p) 2= 2*n3/p2

communication: o + B*n?/p E approximately
Only 1 pair of processors (i and j) are active on any iteration,

and of those, only i is doing computation
=> the algorithm is almost entirely serial
Running time:
= (p*(p-1) + 1)*computation + p*(p-1)*communication

~ 2*03 + pz*a + p*nz*ﬁ

This is worse than the serial time and grows with p.

02/26/2015 CS267 Lecture 12 43

CS267 Lecture 2

Matmul for 1D layout on a Processor Ring

¥ Pairs of adjacent processors can communicate simultaneously

Copy A(myproc) into Tmp"
C(myproc) = C(myproc) + Tmp*B(myproc , myproc)"
forj=1to p-1"
Send Tmp to processor myproc+1 mod p"
Receive Tmp from processor myproc-1 mod p"
C(myproc) = C(myproc) + Tmp*B(myproc-j mod p , myproc)'

« Same idea as for gravity in simple sharks and fish algorithm"
» May want double buffering in practice for overlap”

+ Ignoring deadlock details in code"”
- Time of inner loop = 2%(a + B*N2/p) + 2*n*(n/p)2"

02/26/2015 CS267 Lecture 12 44

11

Matmul for 1D layout on a Processor Ring

¥ Time of inner loop = 2*(a + B*n2/p) + 2*n*(n/p) 2
¥ Total Time = 2*n* (n/p) 2 + (p-1) * Time of inner loop
¥ =~ 2*n3/p + 2*p*a + 2*B*n2

¥ (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:

¥ Perfect speedup for arithmetic
¥ A(myproc) must move to each other processor, costs at least
(p-1)*cost of sending n*(n/p) words

¥ Parallel Efficiency = 2*n 3/ (p * Total Time)
=1/(1 + o * p2/(2*n3) + B * p/(2*n))
=1/ (1 + O(p/n))

¥ Grows to 1 as n/p increases (or o and B shrink)

¥ But far from communication lower bound

02/26/2015 CS267 Lecture 12 45

Need to try 2D Matrix layout

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

4) Row versions of the previous layouts

b
3) 1D Column Block Cyclic Layout

Summary of Parallel Matrix Multiply

¥SUMMA
¥Scalable Universal Matrix Multiply Algorithm
¥Attains communication lower bounds (within log p)
¥Cannon
¥Historically first, attains lower bounds

¥More assumptions
¥ A and B square
¥ P a perfect square

¥2.5D SUMMA

¥Uses more memory to communicate even less
¥ Parallel Strassen

¥ Attains different, even lower bounds

02/26/2015 CS267 Lecture 12 47

TTOTIOTITOTT
01 T .
Generalizes others
2 3 T T T T
5 6) 2D Row and Column
5) 2D Row and Column Blocked Layout Block Cyclic Layout
02/26/2015 CS267 Lecture 12 46
SUMMA Algorithm

¥SUMMA = Scalable Universal Matrix Multiply

¥Presentation from van de Geijn and Watts
¥www.netlib.org/lapack/lawns/lawn96.ps
¥Similar ideas appeared many times

¥Used in practice in PBLAS = Parallel BLAS
¥www.netlib.org/lapack/lawns/lawn100.ps

02/26/2015 CS267 Lecture 12 48

CS267 Lecture 2

12

CS267 Lecture 2

SUMMA uses Outer Product form of MatMul

¥C = A*B means C(ij) = 3k Al,k)*B(k,))

¥ Column-wise outer product:
C=A*B
=3k A(5,k)*B(k,:)
= 3 (k-th col of A)*(k-th row of B)

¥Block column-wise outer product
(block size = 4 for illustration)
C=A*B
= A(;,1:4)*B(1:4,:) + A(:,5:8)*B(5:8,:) + E
= 3k (k-th block of 4 cols of A)*
(k-th block of 4 rows of B)

02/26/2015 CS267 Lecture 12

49

SUMMAD n x n matmul on P ¥2x P12 grid

K"

i" /Bl
H K"
P . * l\ _ <« Brow
4j Z=gR /j clij)
Alik]" 7
Acol
For k=0 to n/b-1

foralli=1to P 12

owner of A[i,k] broadcasts it to whole processor row (using binary tree)
forallj=1to P 12

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)
Receive Ali,k] into Acol

Receive Blk,j] into Brow
C_myproc =C_myproc + Acol * Brow

02/26/2015

CS267 Lecture 12 51

SUMMA D n x n matmul on P Y2x P12 grid

K" i /Blkil"
K"
— . * \ -
g =GN /j clil
Al K]" rq

Cli, jlis n/P2 x n/P12 submatrix of C on processor Pij
Ali,k]is n/P"2 x b submatrix of A

Blk,jlis b x n/P'2 submatrix of B
CIi,jl = C[i,jl + Zk Ali.k]"B[k,]]

* summation over submatrices

Need not be square processor grid

50
02/26/2015 CS267 Lecture 12

SUMMA Costs

For k=0 to n/b-1
foralli=1to P 1?2
owner of A[i,k] broadcasts it to whole processor row (using binary tree)
E #words =log P Y2*y*n/P12 |

#messages = log P 12
forallj=1to P 12

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)
E same #words and #messages

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc =C_myproc + Acol * Brow

E #flops = 2n 2*b/P

° Total #words =log P * n2 /pL/2"
° Within factor of log P of lower bound"”

° (more complicated implementation removes log P factor)"
° Total #messages = log P * n/b"

° Choose b close to maximum, n/PY2, to approach lower bound P2’
° Total #flops = 2n3/P"

52

13

PDGEMM = PBLAS routine
for matrix multiply

Observations:

For fixed N, as P increases
Mflops increases, but
less than 100% efficiency

For fixed P, as N increases,
Mflops (efficiency) rises

DGEMM = BLAS routine
for matrix multiply

Maximum speed for PDGEMM
= # Procs * speed of DGEMM

Observations (same as above)
Efficiency always at least 48%
For fixed N, as P increases,

efficiency drops
For fixed P, as N increases,
efficiency increases

02/26/2015

Performance of PBLAS

Speed i Miops of PDGEMM
Madiive Trocs | Block &
Size | 2000 | 4000 | 10000
Cray T3B 4=2x2| 32| 1055| 1070 ©
16=dx4 3630 | 4005 | 4202
64=8x8 13456 | 14987 | 16755
BMST2 4] sof s o o
16 2514| 2850 ©
64 6205 | 8709 | 10774
Takel X785 T i 2| :0| o o
Paragou 16 1233| 281 0
64 4496 | 4864 | 5257
Berkeley NOW I @[43| 40| 0©
30=4x8 2400 | 2822 | 3450
64 4130 | 5457 | 6647
Ffficiency = MElops(PDGEMM)/(Procs™ ME lops{ DGENM))
Madiive Teak/ | DGEMM | Procs N
proc | Mops 2000 [4000 [10000
Cray T3E 600 60| 4| 13| 74
6| 63| 70| .75
64| 58| 62| 73
BMST2 266 00| 4| %4
6| 79| .89
64| 48| 68| 84
Tatel XO/3 M | 100 o 4] »
Daragou 6| 86| .89
64| 78| 84| 91
Berkeley NOW | 334 29 4| 90| ot
2| 60| e8| 84
64| 50| 66| .81

53

Can we do better?

¥Lower bound assumed 1 copy of data: M = O(n2/P) per proc.
¥What if matrix small enough to fit c>1 copies, so M = cn?/P ?
¥#words_moved = &(#flops / M¥2) = &(n2/ (cl2pl2Y))
¥#messages = &(#flops / M32) = &(P2 [c372)
¥Can we attain new lower bound?
¥Special case: 03D MatmulO: ¢ =18
¥ Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95
¥ Processors arranged in P13 x P13 x P13 grid

¥ Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where
each submatrix is n/P13 x n/P13

¥Not always that much memory availableE

54

02/26/2015 CS267 Lecture 12

2.5D Matrix Multiplication

¥ Assume can fit cn?/P data per processor, ¢ > 1
¥Processors form (P/c)¥2 x (P/c)¥2 x ¢ grid

\/\'L

\O)
\Qﬁ Example: P= 32, c=2

(Plc)Y2

02/26/2015

CS267 Lecture 12

CS267 Lecture 2

2.5D Matrix Multiplication

¥ Assume can fit cn?/P data per processor, ¢ > 1
¥Processors form (P/c)¥2 x (P/c)¥2 x ¢ grid

j

\
ﬁ Initially P(i,j,0) owns A(i,j) and B(i,j)
each of size n(c/P)¥2 x n(c/P)Y2

(1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
(2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of ' | A(i,m)*B(m,j)
(3) Sum-reduce partial sums ', A(i,m)*B(m,j) along k-axis so P(i,j,0) owns C(i,})

14

2.5D Matmul on IBM BG/P, n=64K

¥ As P increases, available memory grows =» c increases proportionally to P
¥ #flops, #words_moved, #messages per proc all decrease proportionally to P
¥ #words_moved = &(#flops / M12) = &(n2/ (cl2pi2))
¥ #messages = &(#flops / M32) = &(P2 /c372)
¥ Perfect strong scaling! But only up to ¢ = P13
Matrix multiplication on BG/P (n=65,536)
100 T

" 25D MM ——
2D MM §

Percentage of machine peak

0
256 512 1024 2048
#nodes

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P
100

25D MM | !
2D MM

80 2.7X faster]

60 | Using c=16 matrix copies

Percentage of machine peak

40 B
12X faster
20 B
0
8192 131072
n
02/26/2015 CS267 Lecture 12

2.5D Matmul on IBM BG/P, 16K nodes / 64K cores

¢ = 16 copies
Matrix multiplication on 16,384 nodes of BG/P
1.4 T T

T T
communication s
1.2 idle 3

95% reduction in comm computation m—

1 -
0.8 - E

Execution time normalized by 2D

N N
A A
2 0 o,
.6‘0 > ‘30 A eé‘o

N

2N
5%} 4

Distinguished Paper Award, EuroParO11
02/26/2015 SCO11 paper by Solomonik, Bhatele, D.

CS267 Lecture 2

Perfect Strong Scaling B in Time and Energy

¥ Every time you add a processor, you should use its memory M too
¥ Start with minimal number of procs: PM = 3n?
¥ Increase P by a factor of ¢ = total memory increases by a factor of ¢
¥ Notation for timing model:
¥ (., % , #; = secs per flop, per word_moved, per message of size m
¥ T(cP) = n¥/(cP) [(++ %/MY2 + #./(mM12)]
=T(P)/c
¥ Notation for energy model:
¥ (g, % , #¢ = joules for same operations
¥) ¢ = joules per word of memory used per sec
*c = joules per sec for leakage, etc.
¥ E(cP) = cP { n3/(cP) [(g*+ %/MY2 + #/(MM¥2)] +) cMT(cP) + *.T(cP) }
=E(P)
¥ ¢ cannot increase forever: ¢ <= P13 (3D algorithm)
¥ Corresponds to lower bound on #messages hitting 1
¥ Perfect scaling extends to StrassenOsnatmul, direct N-body, E
¥ OPerfect Strong Scaling Using No Additional EnergyO
¥ OStrong Scaling oMatmul and Memory-Indep. Comm. Lower BoundsO
¥ Both at bebop.cs.berkeley.edu

15

Classical Matmul

¥ Complexity of classical Matmul

¥Flops: O(n%/p)

¥ Communication lower bound on #words:
&((n3/p)IMY2) = & (M(n/M1/2)3/p)

¥ Communication lower bound on #messages:
&((n3/p)M372) = &((nIM2)3/p)

¥All attainable as M increases past O(n?/p), up to a limit:
can increase M by factor up to p*/3
#words as low as &(n/p?/3)

02/27/2014 CS267 Lecture 12 61

Strong scaling of Matmul on Hopper (n=94080)
G. Ballard, D., O. Holtz, B. Lipshitz, O. Schwartz

CAPS —+—
2.5D-Strassen —*—
2D-Strassen ---e---
Strassen-2D -4
2.5D Classical —&
ScalAPACK ---©

40

Effective GFLOPS per node

ol L
P=49 P=343 P=2401

OCommunication-Avoiding Parallel StrassenO

022620 hebop.cs.berkeley.edu, Supercomputing®12

Scal APACK Parallel Library

ScaLAPACK SOFTWARE HIERARCHY

Sca

Message Passing Primitives
(MPL, PVM, etc.)

02/26/2015 CS267 Lecture 12 63

Extensions of Lower Bound and
Optimal Algorithms
¥ For each processor that does G flops with fast memory of size M
#words_moved = & (G/M12)
¥Extension: for any program that Osmells likeO
¥Nested loops E
¥That access arrays E
¥Where array subscripts are linear functions of loop indices
¥ Ex: A(i,j), B(3%i-4*k+5%, i-}, 2*k, E), E
¥There is a constant s such that
#words_moved = &(G/Ms1)
¥s comes from recent generalization of Loomis-Whitney (s=3/2
¥Ex: linear algebra, n-body, database join, E
¥Lots of open questions: deriving s, optimal algorithms E

02/26/2015 CS267 Lecture 12 64

CS267 Lecture 2

16

