

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Level 1 BLAS dim scalar vector vector scalars 5-element array		prefixes
WEROUTINE IROTG (A. B. C. S)	Generate plane rotation	S. D
UBROUTINE xROTNO(D1, D2, A, B, PARAN)	Generate modified plane rotation	S. D
SUBROUTINE ARGT (N. X. INCX. Y. INCY. C. S)	Apply plane rotation	S. D
SUBROUTINE RADTH (N. X. INCX. Y. INCY. PARAN)	Apply modified plane rotation	S. D
SUBROUTINE ASWAP (N. X. INCX. Y. INCY)	$x \leftrightarrow y$	S. D. C. Z
SUBROUTINE xSCAL (N, ALPHA, X, INCX)	$x \leftarrow \alpha x$	S, D, C, Z, CS, ZD
SUBROUTINE XCOPY (N, X, INCX, Y, INCY)	$y \leftarrow x$	S, D. C, Z
RUBROUTINE xAXPY (N. ALPHA, X. INCX, Y. INCY)	$y \leftarrow \alpha x \pm y$	S, D, C, Z
WHOTION XDOT (N. X. INCX, Y. INCY)	$dot \leftarrow x^T y$	S, D. DS
WHICTION XDOTU (N, X, INCX, Y, INCY)	$dot \leftarrow x_{ij}^T y$	C, Z
WECTION ADDIC (N. X. INCK, Y. INCY)	$dot \leftarrow x^H y$	C, Z
WHCTION MADDI (N. X. INCX, Y. INCY)	$dot \leftarrow \alpha + x^T y$ $nrm2 \leftarrow x _2$	SDS S. D. SC. DZ
UNCTION ANNAL (N. X. INCX.) UNCTION AASUN (N. X. INCX.)	$nrm2 \leftarrow x _2$ $asum \leftarrow re(x) _1 + rm(x) _1$	S. D. SC. DZ S. D. SC. DZ
VECTION XASUN (N. X. INCX) VECTION IXANAX(N. X. INCX)	$asum \leftarrow re(x) _1 + rm(x) _1$ $amax \leftarrow 1^{rt}k \ni re(x_k) + rm(x_k) $	S. D. SC, DZ S. D. C. Z
voctore second o, A, 1804 /	$amax \leftarrow 1^{rr}k \ni [re(x_k)] + [rm(x_k)]$ = $max([re(x_i)] + [rm(x_i)])$	17. D. C. L
Level 2 BLAS	= max(b,c(x)b) + hm(xbb)	
options dim b-width scalar matrix vector scalar vector		
GEW (TRANS, M. N. ALPHA, A. LDA, X. INCR. BETA, Y. INCY)	$y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A - m \times n$	S. D. C. Z
GERV (TRANS, M, N, KL, RU, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y, y \leftarrow \alpha A^T x + \beta y, y \leftarrow \alpha A^H x + \beta y, A = m \times n$	S. D. C. Z
HEENV (UPLD, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	C, Z
HERV (UPLD, N, K, ALFEA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha A x + \beta y$	C, Z
HEPNY (UPLD, N, ALPHA, AP, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha A x + \beta y$	C. Z
ESYMV (UPLD, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)	$y \leftarrow \alpha Ax + \beta y$	S, D
SBRW (UPLD, N, K, ALPEA, A, LDA, X, INCK, BETA, Y, INCY)	$y \leftarrow \alpha A x + \beta y$	S, D
SPRV (UPLD, N, ALPHA, AP, X, INCX, BETA, Y, INCY) (TRAV (UPLD, TRANS, DIAG, N, A, LDA, X, INCX)	$y \leftarrow \alpha A x + \beta y$ $x \leftarrow A x, x \leftarrow A^T x, x \leftarrow A^H x$	S, D S, D, C, Z
	$x \leftarrow Ax, x \leftarrow A^*x, x \leftarrow A^*x$ $x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx$	S, D, C, Z S, D, C, Z
CTERV (UPLD, TRANS, DIAG, N, K, A, LDA, X, INCX) CTERV (UPLD, TRANS, DIAG, N, AP, X, INCX)	$x \leftarrow Ax, x \leftarrow A^*x, x \leftarrow A^*x$ $x \leftarrow Ax, x \leftarrow A^Tx, x \leftarrow A^Hx$	S. D. C. Z S. D. C. Z
TREV (UPLD, IRANS, DIAG, N, A, LDA, X, INCA)	and deline of the and della	S. D. C. Z
TESV (UPLO, TRANS, DIAG, H, K, A, LDA, X, INCA)	$x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-R}x$	S, D, C, Z
TPSV (UPLD, TRANS, DIAG, N, AP, X, INCX)	$x \leftarrow A^{-1}x, x \leftarrow A^{-T}x, x \leftarrow A^{-R}x$	S, D, C, Z
options dim scalar vector vector matrix		
GER (M. N. ALPHA, X. INCK. Y. INCY, A. LDA)	$A \leftarrow \alpha m^T + A, A = m \times n$	S. D
GERU (H. H. ALPHA, X. INCK, Y. INCY, A. LDA)	$A \leftarrow \alpha x y^T + A, A - m \times n$	C.Z
OERC (H, H, ALPHA, X, INCX, Y, INCY, A, LDA)	$A \leftarrow \alpha x u^H + A, A = m \times u$	C. Z
HER (UPLD, N, ALPHA, X, INCX, A, LDA)	$A \leftarrow \alpha x x^H + A$	C, Z
HFR (UPLD, N, ALPHA, X, INCX, AP)	$A \leftarrow \alpha x x^{H} + A$	C, Z
OMER2 (UPLD, N, ALPHA, X, INCK, Y, INCY, A, LDA)	$A \leftarrow axy^H + y(ax)^H + A$	C, Z
HPR2 (UPLD, N. ALFHA, X, INCX, Y, INCY, AP)	$A \leftarrow \alpha x y^H + y(\alpha x)^H + A$	C, Z
SYR (UPLD, N, ALPHA, X, INCX, A, LDA)	$A \leftarrow \alpha x x^T + A$	S. D
eSPR (UPLD, N, ALPHA, X, INCX. AP)	$A \leftarrow \alpha x x^T + A$	S. D
SYR2 (UPLD, N. ALPHA, X. INCX, Y. INCY, A. LDA)	$A \leftarrow \alpha x y_{T}^{T} + \alpha y x_{T}^{T} + A$	S, D
SIPR2 (UPLD, H, ALDHA, X, INCX, Y, INCY, AP)	$A \leftarrow \alpha xy^T + \alpha yx^T + A$	S. D
Level 3 BLAS		
options din scalar matrix scalar matrix		
GEPR (TRANSA, TRANSE, N. N. K. ALPHA, A. LDA, B. LDB, BETA, C. LDC)	$C \leftarrow aon(A)on(B) + \beta C, on(X) = X, X^T, X^H, C - m \times n$	S. D. C. Z
SYNK (SIDE, UPLO, N. N. ALPHA, A. LDA, B. LDB, BETA, C. LDC)	$C \leftarrow \alpha AB + \beta C, C \leftarrow \alpha BA + \beta C, C - m \times n, A = A^T$	S. D. C. Z
HERM (SIDE, UPLO, N, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow aAB + \beta C, C \leftarrow aBA + \beta C, C - m \times n, A = A^B$	C, Z
SYRK (UPLO, TRANS. N. N. ALPEA, A. LDA. BETA, C. LDC.)	$C \leftarrow \alpha A A^T + \beta C C \leftarrow \alpha A^T A + \beta C C - n \times n$	S, D. C, Z
HERE (IND.) TRANS N. 8 ALDRA A LDA BETA C LDC.)	$C \leftarrow \alpha A A^H + \beta C, C \leftarrow \alpha A^H A + \beta C, C = n \times n$	C, Z
SYR2K(UPLO, TRANS, N, K, ALPEA, A, LDA, B, LDB, BETA, C, LDC)	$C \leftarrow aAB^T + \sigma BA^T + \beta C, C \leftarrow aA^TB + \sigma B^TA + \beta C, C = n \times n$	S, D, C, Z
	$C \leftarrow \alpha A B^{H} + \bar{\alpha} B A^{H} + \beta C, C \leftarrow \alpha A^{H} B + \bar{\alpha} B^{H} A + \beta C, C - n \times n$	
ATROM (SIDE, UPLO, TRANSA, DIAG, N. F. ALFHA, A. LDA, B. LDB)	$B \leftarrow \alpha op(A)B, B \leftarrow \alpha Bop(A), op(A) = A, A^T, A^H, B - m \times n$	S, D, C, Z
TREM (SIDE, UPLO, TRANSA, DIAC, M, W, ALPHA, A, LDA, B, LDB)	$B \leftarrow oop(A^{-1})B, B \leftarrow aBop(A^{-1}), op(A) = A, A^T, A^H, B - m \times n$	SDCZ

A brief future look at (Dense) Linear Algebra software (7/7) PLASMA, DPLASMA and MAGMA (now) Ongoing extensions to Multicore/GPU/Heterogeneous Can one software infrastructure accommodate all algorithms and platforms of current (future) interest? How much code generation and tuning can we automate? Details later (Class projects!) (icl.cs.utk.edu/{{d}plasma,magma}) Other related projects Elemental (libelemental.org) Distributed memory dense linear algebra "Balance ease of use and high performance" FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage) Formal Linear Algebra Method Environment

- Attempt to automate code generation across multiple platforms
- BLAST Forum (www.netlib.org/blas/blast-forum)
 - Attempt to extend BLAS, add new functions, extra-precision, ...

Back to basics: Why avoiding communication is important (1/3) Algorithms have two costs: 1.Arithmetic (FLOPS) 2.Communication: moving data between • levels of a memory hierarchy (sequential case) • processors over a network (parallel case).

- Some whole programs (sequences of these operations, no matter how they are interleaved, eg computing A^k)
- Dense and sparse matrices (where #flops << n³)
- Sequential and parallel algorithms
- Some graph-theoretic algorithms (eg Floyd-Warshall)
- Generalizations later (Strassen-like algorithms, loops accessing arrays)
 02/26/2015 CS267 Lecture 12 23

Ex: LAPAC	Table of Contents
 BD – bidiagonal GB – general banded GE – general GG – general, pair GT – tridiagonal HB – Hermitian banded HE – Hermitian HG – upper Hessenb HP – Hermitian, pack HS – upper Hessenb OR – (real) orthogona OP – positive definit PP – positive definit PT – positive definit PT – positive definit 	 TZ – trapezoidal UN – unitary UP – unitary packed acked anded backed
02/26/2015	CS267 Lecture 12 3

Outline Pistory and motivation What is dense linear algebra? Why minimize communication? Lower bound on communication Structure of the Dense Linear Algebra motif What does Alb do? Parallel Matrix-matrix multiplication Attaining the lower bound Other Parallel Algorithms (next lecture)

• Algorithm uses C(i) = C(i) + A	the formula *B(i) = C(i) + Σ _j A(j)*B(j,i)	
broadcast: only	bus-connected machine with one pair of processors can a time (ethernet)	hout
	er a machine with processors nay communicate with neare	•
02/26/2015	CS267 Lecture 12	41

Matrix Multiply: 1D Layout on Bus or Ring

MatMul: 1D layout on Bus without Broadcast

for all i = 1 to P ^{1/2} owner of A[i,k] broadcasts it to whole processor row (using binary tree #words = log P ^{1/2} *b*n/P ^{1/2} , #messages = log P ^{1/2} for all j = 1 to P ^{1/2} owner of B[k,j] broadcasts it to whole processor column (using bin. tree same #words and #messages Receive A[i,k] into Acol Receive B[k,j] into Brow C_myproc = C_myproc + Acol * Brow #flops = 2n ²⁺ b/P Total #words = log P * n ² /P ^{1/2} ° Within factor of log P of lower bound ° (more complicated implementation removes log P factor)	For k=0 to n/b-1	
#words = log P ^{1/2} *b*n/P ^{1/2} , #messages = log P ^{1/2} for all j = 1 to P ^{1/2} owner of B[k,j] broadcasts it to whole processor column (using bin. tree same #words and #messages Receive A[i,k] into Acol Receive B[k,j] into Brow C_myproc = C_myproc + Acol * Brow #flops = 2n ² *b/P Total #words = log P * n ² /P ^{1/2} ° Within factor of log P of lower bound	for all i = 1 to P ^{1/2}	
owner of B[k,j] broadcasts it to whole processor column (using bin. tree same #words and #messages Receive A[i,k] into Acol Receive B[k,j] into Brow C_myproc = C_myproc + Acol * Brow #flops = 2n ² *b/P Total #words = log P * n ² /P ^{1/2} ° Within factor of log P of lower bound		,
same #words and #messages Receive A[i,k] into Acol Receive B[k,j] into Brow C_myproc = C_myproc + Acol * Brow #flops = 2n ² *b/P Total #words = log P * n ² /P ^{1/2} ° Within factor of log P of lower bound	for all $j = 1$ to $P^{1/2}$	
Receive B[k,j] into Brow C_myproc = C_myproc + Acol * Brow #flops = $2n^{2*}b/P$ Total #words = log P * $n^2/P^{1/2}$ ° Within factor of log P of lower bound		sor column (using bin. tree)
C_myproc = C_myproc + Acol * Brow #flops = 2n ² *b/P Total #words = log P * n ² /P ^{1/2} ° Within factor of log P of lower bound	Receive A[i,k] into Acol	
Total #words = log P * n ² /P ^{1/2} ° Within factor of log P of lower bound	Receive B[k,j] into Brow	
 Within factor of log P of lower bound 	C_myproc = C_myproc + Acol * Brow #flops	= 2n ² *b/P
 Within factor of log P of lower bound 	Total #words = log $P * n^2 / P^{1/2}$	
	5	/es log P factor)
Total #messages = log P * n/b	Total #messages = log P * n/b	c ,
	 Choose b close to maximum, n/P^{1/2}, to approximately to approximately the second secon	ppioacii iowei bouilu P

	Performance of PBLAS							
		Speed in Millops of PDGEMM						
	Machine	P	COC6	Block		N		
				Size	2000	4000	1000	00
PDGEMM = PBLAS routine	Cray T3E		2x2	32	1055	1070		0
for matrix multiply		16=			3630			
		64=	8x8		13456	14287	167	55
Observations:	IBM SP2		4	50		0	1	0
For fixed N, as P increases			16		2514			0
Mflops increases, but			64		6205	8709	107	74
less than 100% efficiency	Intel XP/S M	P	4	32	330			0
For fixed P, as N increases,	Paragon		16		1233			0
Mflops (efficiency) rises			64		4496			
	Berkeley NOV		4	32	463	470		0
		32=			2490			
			64		4130	5457	66	17
	Efficiency = M	Floren (P	DCE	200	(Proven*)	MElow	(DCF	- MA
GEMM = BLAS routine	Machine	Peak/		EMM		ser iope	V	un nij
for matrix multiply	Mathine	proc		Mflops	1 10.5	2000		1000
	Cray T3E	600	-		4	.73	.74	1000
Aximum speed for PDGEMM	01119 1022	000		~~~	16	.63	.70	.7
= # Procs * speed of DGEMM					64	.58	.62	7
	IBM SP2	266	-	200	4	.94	104	<u> </u>
Observations (same as above):					16	.79	.89	
Efficiency always at least 48%					64	.48	.68	.8
For fixed N, as P increases,	Lutel XP/S MP	100	1	90	4	.92		<u> </u>
efficiency drops	Paragon			**	16	.86	.89	
For fixed P, as N increases,	, v				64	.78	.84	.9
efficiency increases	Berkeley NOW	334	1	129	4	.90	.91	
				-	32	.60	68	.8
02/26/2015			1		64	.50	.66	.8

