An Introduction to CUDA/OpenCL and Graphics Processors

Forrest Iandola

Bryan Catanzaro (Berkeley -> NVIDIA Research -> Baidu Research)

Outline

- Part 1: Tradeoffs between CPUs and GPUs
- Part 2: CUDA programming
- Part 3: GPU parallel libraries (BLAS, sorting, etc.)

Part 1
Tradeoffs between CPUs and GPUs

Heterogeneous Parallel Computing

Latency
Optimized CPU
Fast Serial Processing

Throughput
Optimized GPU
Scalable Parallel Processing
Latency vs. Throughput

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Ivy Bridge EX (Xeon E7-8890v2)</th>
<th>Kepler (Tesla K40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processing Elements</td>
<td>15 cores, 2 issue, 8 way SIMD @2.8 GHz</td>
<td>15 SMs, 6 issue, 32 way SIMD @745 MHz</td>
</tr>
<tr>
<td>Resident Strands/Threads (max)</td>
<td>15 cores, 2 threads, 8 way SIMD</td>
<td>15 SMs, 64 SIMD vectors, 32 way SIMD</td>
</tr>
<tr>
<td>GPU GFLOP/s</td>
<td>672</td>
<td>4291 (6.3x)</td>
</tr>
<tr>
<td>Memory Bandwidth (Roofline)</td>
<td>85 GB/s</td>
<td>288 GB/s (3.4x)</td>
</tr>
<tr>
<td>Registers File</td>
<td>14 kB (7)</td>
<td>3.75 MB</td>
</tr>
<tr>
<td>Local Store/L1 Cache</td>
<td>960 kB</td>
<td>960 kB</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>3.75 MB</td>
<td>1.5 MB</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>37.5 MB</td>
<td>-</td>
</tr>
</tbody>
</table>

Why Heterogeneity?

- Different goals produce different designs
 - Throughput cores: assume work load is highly parallel
 - Latency cores: assume workload is mostly sequential
- Latency goal: minimize latency experienced by 1 thread
 - lots of big on-chip caches
 - extremely sophisticated control, branch prediction
- Throughput goal: maximize throughput of all threads
 - lots of big ALUs
 - multithreading can hide latency ... so skip the big caches
 - simpler control, cost amortized over ALUs via SIMD

SIMD: Neglected Parallelism

- OpenMP / Pthreads / MPI all neglect SIMD parallelism
- Because it is difficult for a compiler to exploit SIMD
- How do you deal with sparse data & branches?
 - Many languages (like C) are difficult to vectorize
- Most common solution:
 - Either forget about SIMD
 - Pray the autovectorizer likes you
 - Or instantiate intrinsics (assembly language)
 - Requires a new code version for every SIMD extension

- Single Instruction Multiple Data architectures make use of data parallelism
- We care about SIMD because of area and power efficiency concerns
 - Amortize control overhead over SIMD width
 - Parallelism exposed to programmer & compiler
A Brief History of x86 SIMD Extensions

- **8*8 bit Int**
 - MMX

- **4*32 bit FP**
 - SSE

- **2*64 bit FP**
 - SSE2

- **Horizontal ops**
 - SSE3
 - SSSE3
 - SSE4.1

- **8*32 bit FP**
 - AVX
 - AVX-FMA

- **3 operand 256 bit Int ops, Gather**

- **512 bit**
 - MIC
 - 3dNow!
 - SSE4, A
 - SSE5

What to do with SIMD?

- **Neglecting SIMD is becoming more expensive**
 - AVX: 8 way SIMD, Xeon Phi: 16 way SIMD,
 - Nvidia GPU: 32 way SIMD, AMD GPU: 64 way SIMD

- **This problem composes with thread level parallelism**

- **We need a programming model which addresses both problems (Threads and SIMD)**

Part 2

The CUDA Programming Model

- **CUDA is a programming model designed for:**
 - Heterogeneous architectures
 - Wide SIMD parallelism
 - Scalability

- **CUDA provides:**
 - A thread abstraction to deal with SIMD
 - Synchronization & data sharing between small thread groups

- **CUDA programs are written in C++ with minimal extensions**

- **OpenCL is inspired by CUDA, but HW & SW vendor neutral**
Hello World: Vector Addition

```c
// Compute vector sum C = A + B
// Each thread performs one pairwise addition
__global__ void vecAdd(float* a, float* b, float* c) {
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    c[i] = a[i] + b[i];
}
```

```c
int main() {
    // Run N/256 blocks of 256 threads each
    vecAdd<<<N/256, 256>>>(d_a, d_b, d_c);
}
```

- What if N is 1 million?
- Later: what are the bugs in this code?

Hierarchy of Concurrent Threads

- Parallel kernels composed of many threads
 - all threads execute the same sequential program

- Threads are grouped into thread blocks
 - threads in the same block can cooperate

- Threads/blocks have unique IDs

What is a CUDA Thread?

- Independent thread of execution
 - has its own program counter, variables (registers), processor state, etc.
 - no implication about how threads are scheduled

What is a CUDA Thread Block?

- Thread block = a (data) parallel task
 - all blocks in kernel have the same entry point
 - but may execute any code they want

- Thread blocks of kernel must be independent tasks
 - program valid for any interleaving of block executions
CUDA Supports:

- **Thread parallelism**
 - each thread is an independent thread of execution
- **Data parallelism**
 - across threads in a block
 - across blocks in a kernel
- **Task parallelism**
 - different blocks are independent
 - independent kernels executing in separate streams

Synchronization

- Threads within a block may synchronize with **barriers**
  ```
  ... Step 1 ...
  __syncthreads();
  ... Step 2 ...
  ```
- Blocks coordinate via atomic memory operations
 - e.g., increment shared queue pointer with **atomicInc()**
- Implicit barrier between **dependent kernels**
  ```
  vec_minus<<<nblocks, blksize>>>(a, b, c);
  vec_dot<<<nblocks, blksize>>>(c, c);
  ```

Blocks must be independent

- Any possible interleaving of blocks should be valid
 - presumed to run to completion without pre-emption
 - can run in any order
 - can run concurrently OR sequentially
- Blocks may coordinate but not synchronize
 - shared queue pointer: **OK**
 - shared lock: **BAD** ... can easily deadlock
- Independence requirement gives **scalability**

Scalability

- Manycore chips exist in a diverse set of configurations
 ![Scalability Graph](image)
 - CUDA allows one binary to target all these chips
 - Thread blocks bring scalability!
Hello World: Vector Addition

```c
// Compute vector sum C=A+B
// Each thread performs one pairwise addition
__global__ void vecAdd(float* a, float* b, float* c) {
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  c[i] = a[i] + b[i];
}

int main() {
  // Run N/256 blocks of 256 threads each
  vecAdd<<<N/256, 256>>>(d_a, d_b, d_c);
}
```

- What are the bugs in this code?
 - Need memory management
 - If N doesn't divide evenly into 256, need ceiling and guard in kernel
Hello World: Managing Data

```c
int main() {
    int N = 256 * 1024;
    float* h_a = malloc(sizeof(float) * N);
    // Similarly for h_b, h_c. Initialize h_a, h_b
    float* d_a, *d_b, *d_c;
    cudaMalloc(&d_a, sizeof(float) * N);
    // Similarly for d_b, d_c
    cudaMemcpy(d_a, h_a, sizeof(float) * N, cudaMemcpyHostToDevice);
    // Similarly for d_b, d_c
    // Run N/256 blocks of 256 threads each
    vecAdd<<<N/256, 256>>>(d_a, d_b, d_c);
    cudaMemcpy(h_c, d_c, sizeof(float) * N, cudaMemcpyDeviceToHost);
}
```

CUDA: Minimal extensions to C/C++

- Declaration specifiers to indicate where things live
  ```c
  __global__ void KernelFunc(...); // kernel callable from host
  __device__ int GlobalVar; // variable in device memory
  __shared__ int SharedVar; // in per-block shared memory
  ```
- Extend function invocation syntax for parallel kernel launch
  ```c
  KernelFunc<<<500, 128>>>(...); // 500 blocks, 128 threads each
  ```
- Special variables for thread identification in kernels
  ```c
  dim3 threadIdx; dim3 blockIdx; dim3 blockDim;
  ```
- Intrinsics that expose specific operations in kernel code
  ```c
  __syncthreads(); // barrier synchronization
  ```

Using per-block shared memory

- Variables shared across block
  ```c
  __shared__ int *begin, *end;
  ```
- Scratchpad memory
  ```c
  __shared__ int scratch[BLOCKSIZE];
  scratch[threadIdx.x] = begin[threadIdx.x];
  ```
- Communicating values between threads
  ```c
  scratch[threadIdx.x] = begin[threadIdx.x];
  __syncthreads();
  ```
- Per-block shared memory is faster than L1 cache, slower than register file
- It is relatively small: register file is 2-4x larger

CUDA: Features available on GPU

- Double and single precision (IEEE compliant)
- Standard mathematical functions
  ```c
  sinf, powf, atanf, ceil, min, sqrtf, etc.
  ```
- Atomic memory operations
  ```c
  atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
  ```
- These work on both global and shared memory
CUDA: Runtime support

- Explicit memory allocation returns pointers to GPU memory
 - `cudaMalloc()`, `cudaFree()`
- Explicit memory copy for host ↔ device, device ↔ device
 - `cudaMemcpy()`, `cudaMemcpy2D()`,...
- Texture management
 - `cudaBindTexture()`, `cudaBindTextureToArray()`,...
- OpenGL & DirectX interoperability
 - `cudaGLMapBufferObject()`, `cudaD3D9MapVertexBuffer()`,...

OpenCL

- OpenCL is supported by AMD [CPUs, GPUs] and Nvidia
 - Intel, Qualcomm (smartphone GPUs) are also on board
- OpenCL’s data parallel execution model mirrors CUDA, but with different terminology
- OpenCL has rich task parallelism model
 - Runtime walks a dependence DAG of kernels/memory transfers

CUDA and OpenCL correspondence

- Thread ↔ Work-item
- Thread-block ↔ Work-group
- Global memory ↔ Global memory
- Constant memory ↔ Constant memory
- Shared memory ↔ Local memory
- __global__ function ↔ __global__ function
- __device__ function ↔ Local memory
- __constant__ variable ↔ __constant__ variable
- __device__ variable ↔ Private memory
- __shared__ variable ↔ __kernel__ function

OpenCL and SIMD

You can execute OpenCL on CPUs as well as GPUs.

- SIMD issues are handled separately by each runtime
- AMD GPU Runtime
 - Vectorizes over 64-way SIMD
 - Prefers scalar code per work-item (on newer AMD GPUs)
- AMD CPU Runtime
 - No vectorization
 - Use `float4` vectors in your code (`float8` when AVX appears?)
- Intel CPU Runtime
 - Vectorization optional, using `float4`/`float8` vectors still good idea
- Nvidia GPU Runtime
 - Full vectorization, like CUDA
 - Prefers scalar code per work-item
Writing Efficient CUDA/OpenCL Code

- Expose abundant fine-grained parallelism
 - need 1000's of threads for full utilization
- Maximize on-chip work
 - on-chip memory orders of magnitude faster
- Minimize execution divergence
 - SIMT execution of threads in 32-thread warps
- Minimize memory divergence
 - warp loads and consumes complete 128-byte cache line

Profiling

- nvvp (nvidia visual profiler) useful for interactive profiling
- export CUDA_PROFILE=1 in shell for simple profiler
- Then examine cuda_profile_*.log for kernel times & occupancies

SIMD & Control Flow

- Nvidia GPU hardware handles control flow divergence and reconvergence
- Write scalar SIMD code, the hardware schedules the SIMD execution
- Good performing code will try to keep the execution convergent within a warp

Memory, Memory, Memory

- A many core processor \equiv A device for turning a compute bound problem into a memory bound problem

 Kathy Yelick, Berkeley

- Lots of processors, only one socket
- Memory concerns dominate performance tuning
Memory is SIMD too

- Virtually all processors have SIMD memory subsystems

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

- This has two effects:
 - Sparse access wastes bandwidth
 \[
 \begin{array}{ccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \end{array}
 \]
 2 words used, 8 words loaded: ¼ effective bandwidth
 - Unaligned access wastes bandwidth
 \[
 \begin{array}{ccccccc}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 \end{array}
 \]
 4 words used, 8 words loaded: ½ effective bandwidth

Coalescing

- GPUs and CPUs both perform memory transactions at a larger granularity than the program requests ("cache line")
- GPUs have a "coalescer", which examines memory requests dynamically from different SIMD lanes and coalesces them
- To use bandwidth effectively, when threads load, they should:
 - Present a set of unit strided loads (dense accesses)
 - Keep sets of loads aligned to vector boundaries

Data Structure Padding

- Multidimensional arrays are usually stored as monolithic vectors in memory
- Care should be taken to assure aligned memory accesses for the necessary access pattern

Part 3

GPU parallel libraries
Efficiency vs Productivity

- Productivity is often in tension with efficiency
- This is often called the "abstraction tax"

Efficiency Language

Productivity Language

C

Fast

Slow

Less Productive

More Productive

Efficiency and Productivity

- Parallel programming also gives us a "concrete tax"
- How many of you have tried to write ... which is faster than a vendor supplied library?

FFT SGEMM Sort Reduce Scan

- Divergent Parallel Architectures mean performance portability is increasingly elusive
- Low-level programming models tie you to a particular piece of hardware
- And if you’re like me, often make your code slow
- My SGEMM isn’t as good as NVIDIA’s

The Concrete Tax: A Case Study

- OpenCL experiment on CPU and GPU
- Two optimized reductions, one for CPU, one for GPU
- Running GPU code on CPU:
 - 40X performance loss compared to CPU optimized code
- Running CPU on GPU:
 - ~100X performance loss compared to GPU optimized code
- Concrete code led to overspecialization

Abstraction, cont.

- Reduction is one of the simplest parallel computations
- Performance differentials are even starker as complexity increases
- There’s a need for abstractions at many levels
 - Primitive computations (BLAS, Data-parallel primitives)
 - Domain-specific languages
- These abstractions make parallel programming more efficient and more productive

- Use libraries whenever possible!
 - CUBLAS, CUFFT, Thrust
A C++ template library for CUDA
- Mimics the C++ STL

Containers
- On host and device

Algorithms
- Sorting, reduction, scan, etc.

Objectives
- Programmer productivity
 - Build complex applications quickly
- Encourage generic programming
 - Leverage parallel primitives
- High performance
 - Efficient mapping to hardware

Containers
- Concise and readable code
 - Avoids common memory management errors

```cpp
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/transform.h>
#include <cstdlib>

int main(void)
{
    // allocate host vector with two elements
    thrust::host_vector<int> h_vec(2);

    // copy host vector to device
    thrust::device_vector<int> d_vec = h_vec;

    // write device values from the host
    d_vec[0] = 13;
    d_vec[1] = 27;

    // read device values from the host
    std::cout << "sum: " << d_vec[0] + d_vec[1] << std::endl;
}
```
Iterators

Pair of iterators defines a range

```
// allocate device memory
device_vector<int> d_vec(10);

// declare iterator variables
device_vector<int>::iterator begin = d_vec.begin();
device_vector<int>::iterator end = d_vec.end();
device_vector<int>::iterator middle = begin + 5;

// sum first and second halves
int sum_half1 = reduce(begin, middle);
int sum_half2 = reduce(middle, end);

// empty range
int empty = reduce(begin, begin);
```  

Iterators

Iterators act like pointers

```
// declare iterator variables
device_vector<int>::iterator begin = d_vec.begin();
device_vector<int>::iterator end = d_vec.end();

// pointer arithmetic
begin++;

// dereference device iterators from the host
int a = *begin;
int b = begin[3];

// compute size of range [begin,end)
int size = end - begin;
```  

Iterators

Encode memory location

```
// initialize random values on host
host_vector<int> h_vec(100);
generate(h_vec.begin(), h_vec.end(), rand);

// copy values to device
device_vector<int> d_vec = h_vec;

// compute sum on host
int h_sum = reduce(h_vec.begin(), h_vec.end());

// compute sum on device
int d_sum = reduce(d_vec.begin(), d_vec.end());
```  

Algorithms in Thrust

Elementwise operations

```
for_each, transform, gather, scatter ...
```

Reductions

```
reduce, inner_product, reduce_by_key ...
```

Prefix-Sums

```
inclusive_scan, inclusive_scan_by_key ...
```

Sorting

```
sort, stable_sort, sort_by_key ...
```
Algorithms in Thrust

- **Standard operators**

```cpp
// allocate memory
device_vector<int> A(10);
device_vector<int> B(10);
device_vector<int> C(10);

// transform A + B -> C
transform(A.begin(), A.end(), B.begin(), C.begin(), plus<int<?>>());

// transform A - B -> C
transform(A.begin(), A.end(), B.begin(), C.begin(), minus<int<?>>());

// multiply reduction
int product = reduce(A.begin(), A.end(), 1, multiplies<int<?>>());
```

Custom Types & Operators

```cpp
struct negate_float2
{
    __host__ __device__
    float2 operator()(float2 a)
    {
        return make_float2(-a.x, -a.y);
    }
};

// declare storage
device_vector<float2> input = ...
device_vector<float2> output = ...

// create function object or 'functor'
negate_float2 func;

// negate vectors
transform(input.begin(), input.end(), output.begin(), func);
```

Interoperability w/ custom kernels

- Convert iterators to raw pointers

```cpp
// allocate device vector
thrust::device_vector<int> d_vec(4);

// obtain raw pointer to device vector's memory
int * ptr = thrust::raw_pointer_cast(&d_vec[0]);

// use ptr in a CUDA C kernel
my_kernel<<< N / 256, 256 >>>(N, ptr);

// Note: ptr cannot be dereferenced on the host!
```

Thrust Recap

- Containers manage memory
 - Help avoid common errors
- Iterators define ranges
 - Know where data lives
- Algorithms act on ranges
 - Support general types and operators

Conclusions

- Part 1: Tradeoffs between CPUs and GPUs
 - Latency vs Throughput
- Part 2: CUDA programming
 - don't forget cudaMemcpy!
- Part 3: GPU parallel libraries
 - cuBLAS, cuFFT

Questions?
CUDA is designed to be functionally forgiving

However, to get good performance, one must understand how CUDA is mapped to Nvidia GPUs
- Threads: each thread is a SIMD vector lane
- Warps: A SIMD instruction acts on a “warp”
 - Warp width is 32 elements: LOGICAL SIMD width
- Thread blocks: Each thread block is scheduled onto an SM
 - Peak efficiency requires multiple thread blocks per SM

The GPU is very deeply pipelined to maximize throughput
- This means that performance depends on the number of thread blocks which can be allocated on a processor
- Therefore, resource usage costs performance:
 - More registers => Fewer thread blocks
 - More shared memory usage => Fewer thread blocks
- It is often worth trying to reduce register count in order to get more thread blocks to fit on the chip
 - For Kepler, target 32 registers or less per thread for full occupancy

The Runtime tries to fit as many thread blocks simultaneously as possible on to an SM
- The number of simultaneous thread blocks \(B \) is \(\leq 8 \)
- The number of warps per thread block \(T \) \(\leq 32 \)
- Each SM has scheduler space for \(64 \) warps \(W \)
 - \(B \times T \leq W = 64 \)
 - The number of threads per warp \(V \) is \(32 \)
 - \(B \times T \times V \times \text{Registers per thread} \leq 65536 \)
 - \(B \times \text{Shared memory (bytes) per block} \leq 49152/16384 \)
 - Depending on Shared memory/L1 cache configuration
- Occupancy is reported as \(B \times T / W \)
Explicit versus implicit parallelism

- CUDA is explicit
 - Programmer's responsibility to schedule resources
 - Decompose algorithm into kernels
 - Decompose kernels into blocks
 - Decompose blocks into threads

Explicit versus implicit parallelism

- SAXPY in CUDA

```c
__global__
void SAXPY(int n, float a, float *x, float *y)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < n)
        y[i] = a * x[i] + y[i];
}
SAXPY <<< n/256, 256 >>>(n, a, x, y);
```

Explicit versus implicit parallelism

- SAXPY in Thrust

```c++
// C++ functor replaces __global__ function
struct saxpy {
    float a;
    saxpy(float _a) : a(_a) {}

    __host__ __device__
    float operator()(float x, float y) {
        return a * x + y;
    }
};
transform(x.begin(), x.end(), y.begin(), y.begin(), saxpy(a));
```
Implicitly Parallel

- Algorithms expose lots of *fine-grained* parallelism
 - Generally expose $O(N)$ independent threads of execution
 - Minimal constraints on implementation details
- Programmer identifies opportunities for parallelism
 - Thrust determines explicit decomposition onto hardware
- Finding parallelism in sequential code is hard
 - Mapping parallel computations onto hardware is easier

Productivity Implications

- Consider a serial reduction

```cpp
// sum reduction
int sum = 0;
for (i = 0; i < n; ++i)
    sum += v[i];
```

- Consider a serial reduction

```cpp
// product reduction
int product = 1;
for (i = 0; i < n; ++i)
    product *= v[i];
```

- Consider a serial reduction

```cpp
// max reduction
int max = 0;
for (i = 0; i < n; ++i)
    max = std::max(max, v[i]);
```
Productivity Implications

- Compare to low-level CUDA

```c
int sum = 0;
for(i = 0; i < n; ++i)
    sum += v[i];
```

```
__global__
void block_sum(const float *input,
    float *per_block_results,
    const size_t n)
{

    extern __shared__ float sdata[];

    unsigned int i = blockIdx.x * blockDim.x + threadIdx.x;
    if(i < n)
        x = input[i];
    ...
```

Leveraging Parallel Primitives

- Use `sort` liberally

<table>
<thead>
<tr>
<th>data type</th>
<th>std::sort</th>
<th>tbb::parallel_sort</th>
<th>thrust::sort</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>25.1</td>
<td>68.3</td>
<td>3532.2</td>
</tr>
<tr>
<td>short</td>
<td>15.1</td>
<td>46.8</td>
<td>1741.6</td>
</tr>
<tr>
<td>int</td>
<td>10.6</td>
<td>35.1</td>
<td>804.8</td>
</tr>
<tr>
<td>long</td>
<td>10.3</td>
<td>34.5</td>
<td>291.4</td>
</tr>
<tr>
<td>float</td>
<td>8.7</td>
<td>28.4</td>
<td>819.8</td>
</tr>
<tr>
<td>double</td>
<td>8.5</td>
<td>28.2</td>
<td>358.9</td>
</tr>
</tbody>
</table>

Input-Sensitive Optimizations

Leveraging Parallel Primitives

- Combine `sort` with `reduce_by_key`
 - Keyed reduction
 - Bring like items together, collapse
 - Poor man’s MapReduce

- Can often be faster than custom solutions
 - I wrote an image histogram routine in CUDA
 - Bit-level optimizations and shared memory atomics
 - Was 2x slower than `thrust::sort` + `thrust::reduce_by_key`
Thrust on github

- Quick Start Guide
- Examples
- Documentation
- Mailing list (thrust-users)

Thrust Summary

- Throughput optimized processors complement latency optimized processors
- Programming models like CUDA and OpenCL enable heterogeneous parallel programming
- They abstract SIMD, making it easy to use wide SIMD vectors
- CUDA and OpenCL encourages SIMD friendly, highly scalable algorithm design and implementation
- Thrust is a productive C++ library for CUDA development

SoA, AoS

- Different data access patterns may also require transposing data structures

- The cost of a transpose on the data structure is often much less than the cost of uncoalesced memory accesses
- Use shared memory to handle block transposes