CS 267

Tricks with Trees

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr15

Outline

° A log n lower bound to compute any function in parallel
° Reduction and broadcast in O(log n) time
° Parallel prefix (scan) in O(log n) time
° Adding two n-bit integers in O(log n) time
° Multiplying n-by-n matrices in O(log n) time
° Inverting n-by-n triangular matrices in O(log² n) time
° Inverting n-by-n dense matrices in O(log² n) time
° Evaluating arbitrary expressions in O(log n) time
° Evaluating recurrences in O(log n) time
° "2D parallel prefix", for image segmentation (Bryan Catanzaro, Kurt Keutzer)
° Sparse-Matrix-Vector-Multiply (SpMV) using Segmented Scan
° Parallel page layout in a browser (Leo Meyerovich, Ras Bodik)
° Solving n-by-n tridiagonal matrices in O(log n) time
° Traversing linked lists
° Computing minimal spanning trees
° Computing convex hulls of point sets...
A log \(n \) lower bound to compute any function of \(n \) variables

° Assume we can only use binary operations, one per time unit
° After 1 time unit, an output can only depend on two inputs
° Use induction to show that after \(k \) time units, an output can only depend on \(2^k \) inputs
 • After \(\log_2 n \) time units, output depends on at most \(n \) inputs
° A binary tree performs such a computation

Broadcasts and Reductions on Trees

Parallel Prefix, or Scan

° If “*” is an associative operator, and \(x[0],...x[p-1] \) are input data then parallel prefix operation computes

\[
y[j] = x[0] \cdot x[1] \cdot ... \cdot x[j] \quad \text{for } j=0,1,...,p-1
\]

° Notation: \(j:k \) means \(x[j]+x[j+1]+...+x[k] \), blue is final value

Mapping Parallel Prefix onto a Tree - Details

° Up-the-tree phase (from leaves to root)
 1) Get values L and R from left and right children
 2) Save L in a local register Lsave
 3) Pass sum L+R to parent
° By induction, Lsave = sum of all leaves in left subtree
° Down the tree phase (from root to leaves)
 1) Get value S from parent (the root gets 0)
 2) Send S to the left child
 3) Send S + Lsave to the right child
° By induction, S = sum of all leaves to left of vertex receiving S
E.g., Fibonacci via Matrix Multiply Prefix

\[
\begin{pmatrix}
F_{n+1} \\
F_n
\end{pmatrix}
= \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
\]

Can compute all \(F_n \) by matmul_prefix on

\[
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}, \begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}, \ldots\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}
\]

then select the upper left entry

Other applications of scan = parallel prefix

° There are many applications of scans, some more obvious than others
 • add multi-precision numbers (represented as array of numbers)
 • evaluate recurrences, expressions
 • solve tridiagonal systems (but numerically unstable!)
 • implement bucket sort and radix sort
 • to dynamically allocate processors
 • to search for regular expression (e.g., grep)
 • many others...

° Names: +\ (APL), cumsum (Matlab), MPI_SCAN

° Note: 2n operations used when only n-1 needed

Multiplying n-by-n matrices in O(\(\log n \)) time

° For all (1 <= i,j,k <= n) \(P(i,j,k) = A(i,k) \cdot B(k,j) \)
 • cost = 1 time unit, using \(n^2 \) processors

° For all (1 <= i,j <= n) \(C(i,j) = \sum_{k=1}^{n} P(i,j,k) \)
 • cost = O(\(\log n \)) time, using \(n^3 / 2 \) processors

Adding two n-bit integers in O(\(\log n \)) time

° Let \(a = a[n-1]a[n-2]\ldots a[0] \) and \(b = b[n-1]b[n-2]\ldots b[0] \) be two n-bit binary numbers

° We want their sum \(s = a+b = s[n]s[n-1]\ldots s[0] \)

° Challenge: compute all \(c[i] \) in O(\(\log n \)) time via parallel prefix

 \[
 c[-1] = 0 \\
 \text{for } i = 0 \text{ to } n-1 \\
 c[i] = ((a[i] \text{ xor } b[i]) \text{ and } c[i-1]) \text{ or } (a[i] \text{ and } b[i]) \text{ ... next carry bit}
 \]

° Used in all computers to implement addition - Carry look-ahead

Multiplying n-by-n matrices in O(\(\log n \)) time

° For all (1 <= i,j,k <= n) \(P(i,j,k) = A(i,k) \cdot B(k,j) \)
 • cost = 1 time unit, using \(n^2 \) processors

° For all (1 <= i,j <= n) \(C(i,j) = \sum_{k=1}^{n} P(i,j,k) \)
 • cost = O(\(\log n \)) time, using \(n^3 / 2 \) processors

Adding two n-bit integers in O(\(\log n \)) time

° Let \(a = a[n-1]a[n-2]\ldots a[0] \) and \(b = b[n-1]b[n-2]\ldots b[0] \) be two n-bit binary numbers

° We want their sum \(s = a+b = s[n]s[n-1]\ldots s[0] \)

° Challenge: compute all \(c[i] \) in O(\(\log n \)) time via parallel prefix

 \[
 c[-1] = 0 \\
 \text{for } i = 0 \text{ to } n-1 \\
 c[i] = ((a[i] \text{ xor } b[i]) \text{ and } c[i-1]) \text{ or } (a[i] \text{ and } b[i]) \text{ ... next carry bit}
 \]

° Used in all computers to implement addition - Carry look-ahead

Multiplying n-by-n matrices in O(\(\log n \)) time

° For all (1 <= i,j,k <= n) \(P(i,j,k) = A(i,k) \cdot B(k,j) \)
 • cost = 1 time unit, using \(n^2 \) processors

° For all (1 <= i,j <= n) \(C(i,j) = \sum_{k=1}^{n} P(i,j,k) \)
 • cost = O(\(\log n \)) time, using \(n^3 / 2 \) processors
Inverting triangular n-by-n matrices in $O(\log^2 n)$ time

- **Fact:**
 \[
 \begin{pmatrix}
 A & 0 \\
 C & B
 \end{pmatrix}^{-1} = \begin{pmatrix}
 A^{-1} & 0 \\
 -B^{-1}CA^{-1} & B^{-1}
 \end{pmatrix}
 \]

- **Function Tri_Inv(T)**
 - Assume $n = \dim(T) = 2^m$ for simplicity.
 - $\text{time}(\text{Tri}_\text{Inv}(n)) = \text{time}(\text{Tri}_\text{Inv}(n/2)) + O(\log(n))$
 - Change variable to $m = \log n$ to get $\text{time}(\text{Tri}_\text{Inv}(n)) = O(\log^2 n)$

- If T is 1-by-1, return $1/T$.
- Else, write $T = \begin{pmatrix} A & 0 \\ C & B \end{pmatrix}$

 - In parallel do:
 - $\text{invA} = \text{Tri}_\text{Inv}(A)$
 - $\text{invB} = \text{Tri}_\text{Inv}(B)$
 - $\text{newC} = -\text{invB} \cdot C \cdot \text{invA}$
 - Return $\begin{pmatrix} \text{invA} & 0 \\ \text{newC} & \text{invB} \end{pmatrix}$

- $\text{time}(\text{Tri}_\text{Inv}(n)) = \text{time}(\text{Tri}_\text{Inv}(n/2)) + O(\log(n))$
 - Change variable to $m = \log n$ to get $\text{time}(\text{Tri}_\text{Inv}(n)) = O(\log^2 n)$

Inverting Dense n-by-n matrices in $O(\log^2 n)$ time

- **Lemma 1: Cayley-Hamilton Theorem**
 - Expression for A^{-1} via characteristic polynomial in A

- **Lemma 2: Newton’s Identities**
 - Triangular system of equations for coefficients of characteristic polynomial, where matrix entries $= s_k$

- **Lemma 3: $s_k = \text{trace}(A^k) = \sum A^k_{i,i}$**

 - **Csanky’s Algorithm (1976)**
 1) Compute the powers A, A^2, \ldots, A^{n-1} by parallel prefix.
 - Cost $= O(\log^2 n)$
 2) Compute $s_k = \text{trace}(A^k)$
 - Cost $= O(\log n)$
 3) Solve Newton identities for coefficients of characteristic polynomial.
 - Cost $= O(\log^2 n)$
 4) Evaluate A^{-1} using Cayley-Hamilton Theorem.
 - Cost $= O(\log n)$

- Completely numerically unstable

Evaluating arbitrary expressions

- Let E be an arbitrary expression formed from $+, \cdot, −, /, \text{parentheses}$, and n variables, where each appearance of each variable is counted separately.

 - Can think of E as arbitrary expression tree with n leaves (the variables) and internal nodes labeled by $+, \cdot, −$ and $/$.

- **Theorem (Brent):** E can be evaluated in $O(\log n)$ time, if we reorganize it using laws of commutativity, associativity and distributivity.

- **Sketch of (modern) proof:** evaluate expression tree E greedily by repeatedly
 - collapsing all leaves into their parents at each time step
 - evaluating all "chains" in E with parallel prefix

Evaluating recurrences

- Let $x_i = f(x_{i-1})$, f a rational function, x_0 given.

 - How fast can we compute x_n?

- **Theorem (Kung):** Suppose $\deg(f_i) = d$ for all i
 - If $d=1$, x_n can be evaluated in $O(\log n)$ using parallel prefix.
 - If $d>1$, evaluating x_n takes $\Omega(n)$ time, i.e. no speedup is possible.

 - **Sketch of proof when $d=1$**
 \[
 x_i = \frac{(a_i \cdot x_{i-1} + b_i \cdot c_i \cdot x_{i-1} + d_i \cdot c_i \cdot x_{i-1} + d_i \cdot c_i \cdot x_{i-1} + d_i \cdot c_i \cdot x_{i-1})}{c_i \cdot d_i \cdot \text{num}_{i-1}}
 \]
 Can use parallel prefix with 2-by-2 matrix multiplication.

 - **Sketch of proof when $d>1$**
 - $\deg(x_{i-1})$ as a function of x_n is d^i.
 - After i parallel steps, $\deg($anything$) \leq 2^i$.
 - Computing x_i takes $O(i)$ steps.
Image Segmentation (1/4)

* Contours are subjective – they depend on perspective
 - Surprise: Humans agree (somewhat)
* Goal: generate contours automatically
 - Use them to break images into separate segments (subimages)
 - J. Malik’s group has leading algorithm
 - Enable automatic image search and retrieval ("Find all the pictures with Fred")

Image Segmentation (2/4)

* Think of image as matrix \(A(i,j) \) of pixels
 - Each pixel has separate R(ed), G(reen), B(lue) intensities
* Bottleneck (so far) of Malik’s algorithm is to compute other matrices indicating whether pixel \((i,j)\) likely to be on contour
 - Ex: \(C(i,j) = \text{average } \text{R intensity} \) of pixels in rectangle above \((i,j)\) – \(\text{average } \text{R intensity} \) of pixels in rectangle below \((i,j)\)
 - \(C(i,j) \) large for pixel \((i,j)\) marked with \(\bullet\), so \((i,j)\) likely to be on contour

* Algorithm eventually computes eigenvectors of sparse matrix with entries computed from matrices like \(C\)
 - Analogous to graph partitioning in later lecture

Image Segmentation (3/4)

* Bottleneck: Given \(A(i,j) \), compute \(C(i,j) \) where
 - \(S_a(i,j) = \text{sum of } A(i,j) \text{ for entries in } k \times (2k+1) \text{ rectangle above } A(i,j) \)
 \[
 = \sum A(r,s) \text{ for } i-k \leq r < i-1 \text{ and } j-k \leq s < j+k
 \]
 - \(S_b(i,j) = \text{similar sum of rectangle below } A(i,j) \)
 - \(C(i,j) = S_a(i,j) - S_b(i,j) \)
* Approach (Bryan Catanzaro)
 - Compute \(S(i,j) = \sum A(r,s) \text{ for } r \leq i \text{ and } s \leq j \)
 - Then sum of \(A(i,j) \) over any rectangle \((I_{low} \leq i \leq I_{high}, J_{low} \leq j \leq J_{high})\)
 \[
 = S(I_{high}, J_{high}) - S(I_{low}-1, J_{high}) - S(I_{high}, J_{low} - 1) + S(I_{low}-1, J_{low} - 1)
 \]

Image Segmentation (4/4)

* New Bottleneck: Given \(A(i,j) \), compute \(S(i,j) \) where
 - \(S(i,j) = \sum A(r,s) \text{ for } r \leq i \text{ and } s \leq j \)
* “2 dimensional parallel prefix”
 - Do parallel prefix independently on each row of \(A(i,j) \):
 - \(S_{row}(i,j) = \sum A(i,s) \text{ for } s \leq j \)
 - Do parallel prefix independently on each column of \(S_{row} \):
 - \(S(i,j) = \sum S_{row}(r,j) \text{ for } r \leq i \text{ and } r \leq i \)
Sparse-Matrix-Vector-Multiply (SpMV) \(y = A^*x \)

Using Segmented Scan (SegScan)

- Segscan computes prefix sums of arbitrary segments

 Segscan \((3, 1, 4, 5, 6, 1, 2, 3)\):
 \[
 \[\Rightarrow [3, 4, 8, 5, 6, 7, 9, 3]\]

- Use CSR format of Sparse Matrix \(A \), store \(x \) densely

 \[
 A = \begin{bmatrix}
 1 & 2 & 3 & 0 \\
 2 & 4 & 0 & 0 & 5 \\
 3 & 0 & 0 & 0 & 1 \\
 \end{bmatrix}
 \]

 \[
 \text{Val} = [\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 3 & 1 \end{bmatrix}] \\
 \text{Col}_\text{Ind} = [\begin{bmatrix} 1 & 3 & 4 & 1 & 5 & 1 & 5 \end{bmatrix}] \\
 \text{Row}_\text{Ptr} = [\begin{bmatrix} 1 & 4 & 7 & 9 \end{bmatrix}] \\
 \]

- Create array \(P \) of all nonzero \(A(i,j)\times(x(j) = \text{Val}(k)\times(\text{Col}_\text{Ind}(k))) \)

 \[
 P = [\begin{bmatrix} 7 & 10 & 23 & 34 & 14 & 32 & 15 & 21 & 3 \end{bmatrix}] \\
 \]

- Create array \(S \) showing where segments (rows) start

 \[
 S = [\begin{bmatrix} T & F & F & T & F \end{bmatrix}] \\
 \]

- Compute SegScan \((P, S)\) =

 \[
 \begin{bmatrix} 7 & 11 & 14 & 14 & 46 & 61 & 21 & 24 \end{bmatrix}
 \]

- Extract \(A^*x \) = \([\begin{bmatrix} 14 & 61 & 24 \end{bmatrix}]\)

Page layout in a browser

- Applying layout rules to html description of a webpage is a bottleneck, scan can help

- **Simplest example**

 - Given widths \([x_1, x_2, \ldots, x_n]\) of items to display on page, where should each item go?

 - Item \(j \) starts at \(x_1 + x_2 + \ldots + x_{j-1} \)

- **Real examples have complicated constraints**

 - Defined by general trees, since in html each object to display can be composed of other objects

 - To get location of each object, need to do preorder traversal of tree, "adding up" constraints of previous objects

 - Scan can do preorder traversal of any tree in parallel

 - Not just binary trees

- **Ras Bodik, Leo Meyerovich**

Summary of tree algorithms

- Lots of problems can be done quickly - in theory - using trees

- Some algorithms are widely used

 - broadcasts, reductions, parallel prefix

 - carry look ahead addition

- Some are of theoretical interest only

 - Csanky’s method for matrix inversion

 - Solving tridiagonal linear systems (without pivoting)

 - Both numerically unstable

 - Csanky needs too many processors

- Embedded in various systems

 - MPI, Split-C, Titanium, NESL, other languages

 - CM-5 hardware control network