Motivation

- Most applications run at < 10% of the “peak” performance of a system
 - Peak is the maximum the hardware can physically execute
- Much of this performance is lost on a single processor, i.e., the code running on one processor often runs at only 10-20% of the processor peak
- Most of the single processor performance loss is in the memory system
 - Moving data takes much longer than arithmetic and logic
- To understand this, we need to look under the hood of modern processors
 - For today, we will look at only a single “core” processor
 - These issues will exist on processors within any parallel computer

Possible conclusions to draw from today’s lecture

- “Computer architectures are fascinating, and I really want to understand why apparently simple programs can behave in such complex ways!”
- “I want to learn how to design algorithms that run really fast no matter how complicated the underlying computer architecture.”
- “I hope that most of the time I can use fast software that someone else has written and hidden all these details from me so I don’t have to worry about them!”
- All of the above, at different points in time
Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Use of microbenchmarks to characterized performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

Idealized Uniprocessor Model

- Processor names bytes, words, etc. in its address space
 - These represent integers, floats, pointers, arrays, etc.
- Operations include
 - Read and write into very fast memory called registers
 - Arithmetic and other logical operations on registers
- Order specified by program
 - Read returns the most recently written data
 - Compiler and architecture translate high level expressions into "obvious" lower level instructions
 - Hardware executes instructions in order specified by compiler
- Idealized Cost
 - Each operation has roughly the same cost
 (read, write, add, multiply, etc.)

Real processors have

- registers and caches
 - small amounts of fast memory
 - store values of recently used or nearby data
- different memory ops can have very different costs
- parallelism
 - multiple "functional units" that can run in parallel
 - different orders, instruction mixes have different costs
- pipelining
 - a form of parallelism, like an assembly line in a factory

Why is this your problem?

- In theory, compilers and hardware "understand" all this and can optimize your program; in practice they don't.
- They won't know about a different algorithm that might be a much better "match" to the processor

In theory there is no difference between theory and practice. But in practice there is. - Yogi Berra
Outline

- Idealized and actual costs in modern processors
- Memory hierarchies
 - Temporal and spatial locality
 - Basics of caches
 - Use of microbenchmarks to characterize performance
- Parallelism within single processors
- Case study: Matrix Multiplication
 - Use of performance models to understand performance
 - Attainable lower bounds on communication

Memory Hierarchy

- Most programs have a high degree of locality in their accesses
 - spatial locality: accessing things nearby previous accesses
 - temporal locality: reusing an item that was previously accessed
- Memory hierarchy tries to exploit locality to improve average

Memory Hierarchy Diagram

Approaches to Handling Memory Latency

- Eliminate memory operations by saving values in small, fast memory (cache) and reusing them
 - need temporal locality in program
- Take advantage of better bandwidth by getting a chunk of memory and saving it in small fast memory (cache) and using whole chunk
 - bandwidth improving faster than latency: 23% vs 7% per year
 - need spatial locality in program
- Take advantage of better bandwidth by allowing processor to issue multiple reads to the memory system at once
 - concurrency in the instruction stream, e.g. load whole array, as in vector processors; or prefetching
- Overlap computation & memory operations
 - prefetching
Cache Basics

- Cache is fast (expensive) memory which keeps copy of data in main memory; it is hidden from software
 - Simplest example: data at memory address xxxxx1101 is stored at cache location 1101
- Cache hit: in-cache memory access—cheap
- Cache miss: non-cached memory access—expensive
 - Need to access next, slower level of cache
- Cache line length: # of bytes loaded together in one entry
 - Ex: If either xxxxx1100 or xxxxx1101 is loaded, both are
- Associativity
 - Direct-mapped: only 1 address (line) in a given range in cache
 - Data stored at address xxxxx1101 stored at cache location 1101, in 16 word cache
 - n-way: n ≥ 2 lines with different addresses can be stored
 - Up to n = 16 words with addresses xxxxx1101 can be stored at cache location 1101 (so cache can store 16n words)

Why Have Multiple Levels of Cache?

- On-chip vs. off-chip
 - On-chip caches are faster, but limited in size
- A large cache has delays
 - Hardware to check longer addresses in cache takes more time
 - Associativity, which gives a more general set of data in cache, also takes more time
- Some examples:
 - Cray T3E eliminated one cache to speed up misses
 - IBM uses a level of cache as a "victim cache" which is cheaper
- There are other levels of the memory hierarchy
 - Register, pages (TLB, virtual memory), ...
 - And it isn’t always a hierarchy

Experimental Study of Memory (Membench)

- Microbenchmark for memory system performance
 - for array A of length L from 4KB to 8MB by 2x for stride s from 4 Bytes (1 word) to L/2 by 2x
time the following loop
 (repeat many times and average) 1 experiment
 - for i from 0 to L-1 by s
 - load A[i] from memory (4 Bytes)

Membench: What to Expect

- Consider the average cost per load
 - Plot one line for each array length, time vs. stride
 - Small stride is best: if cache line holds 4 words, at most ¼ miss
 - If array is smaller than a given cache, all those accesses will hit
 (after the first run, which is negligible for large enough runs)
 - Picture assumes only one level of cache
 - Values have gotten more difficult to measure on modern procs
Memory Hierarchy on a Sun Ultra-2i

- L1: 16 KB, 2 cycles (6 ns)
- L2: 64 byte line
- L2: 2 MB, 12 cycles (36 ns)
- Mem: 396 ns (132 cycles)
- 8 K pages, 32 TLB entries
- Array length
See www.cs.berkeley.edu/~yelick/arvindk/t3d-isca95.ps for details

Memory Hierarchy on a Power3 (Seaborg)

- L1: 32 KB, 128B line, 9 cycles
- L2: 8 MB, 128B line, 5-2 cycles
- Mem: 396 ns (132 cycles)
array size

Memory Hierarchy on an Intel Core 2 Duo

- Array length

Stanza Triad

- Even smaller benchmark for prefetching
- Derived from STREAM Triad
- Stanza (L) is the length of a unit stride run
while i < arraylength
for each L element stanza
A[i] = scalar * X[i] + Y[i]
skip k elements
... 1) do L triads stanza 2) skip k elements 3) do L triads stanza

Source: Kamil et al, MSP05
Stanza Triad Results

This graph (x-axis) starts at a cache line size (>=16 Bytes)
• If cache locality was the only thing that mattered, we would expect
 • Flat lines equal to measured memory peak bandwidth (STREAM) as on Pentium3
• Prefetching gets the next cache line (pipelining) while using the current one
 • This does not “kick in” immediately, so performance depends on L

Lessons
• Actual performance of a simple program can be a complicated function of the architecture
 • Slight changes in the architecture or program change the performance significantly
 • To write fast programs, need to consider architecture
 • True on sequential or parallel processor
 • We would like simple models to help us design efficient algorithms
 • We will illustrate with a common technique for improving cache performance, called blocking or tiling
 • Idea: used divide-and-conquer to define a problem that fits in register/L1-cache/L2-cache

Outline
• Idealized and actual costs in modern processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
 • Hidden from software (sort of)
 • Pipelining
 • SIMD units
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication

What is Pipelining?

Dave Patterson’s Laundry example: 4 people doing laundry
 wash (30 min) + dry (40 min) + fold (20 min) = 90 min

<table>
<thead>
<tr>
<th>6 PM</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>40</td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

- In this example:
 • Sequential execution takes 4 * 90min = 6 hours
 • Pipelined execution takes 30+4*40+20 = 3.5 hours
 • Bandwidth = loads/hour
 • BW = 4/6 l/h w/o pipelining
 • BW = 4/3.5 l/h w pipelining
 • BW <= 1.5 l/h w pipelining, more total loads
 • Pipelining helps bandwidth but not latency (90 min)
 • Bandwidth limited by slowest pipeline stage
 • Potential speedup = Number of pipe stages
Example: 5 Steps of MIPS Datapath

- Instruction Fetch
- Instruction Decode
- Execute/Address Calculation
- Memory Access
- Write Back

- Pipelining is also used within arithmetic units: a fp multiply may have latency 10 cycles, but throughput of 1/cycle

SSE / SSE2 SIMD on Intel

- SSE2 data types: anything that fits into 16 bytes, e.g.,
 - 4x floats
 - 2x doubles
 - 16x bytes

- Instructions perform add, multiply etc. on all the data in this 16-byte register in parallel

- Challenges:
 - Need to be contiguous in memory and aligned
 - Some instructions to move data around from one part of register to another
 - Similar on GPUs, vector processors (but many more simultaneous operations)

SIMD: Single Instruction, Multiple Data

- Scalar processing:
 - traditional mode
 - one operation produces one result

- SIMD processing:
 - with SSE / SSE2
 - SSE = streaming SIMD extensions
 - one operation produces multiple results

What does this mean to you?

- In addition to SIMD extensions, the processor may have other special instructions
 - Fused Multiply-Add (FMA) instructions: \(x = y + c * z \)
 - is so common some processor execute the multiply/add as a single instruction, at the same rate (bandwidth) as + or * alone

- In theory, the compiler understands all of this
 - When compiling, it will rearrange instructions to get a good "schedule" that maximizes pipelining, uses FMAs and SIMD
 - It works with the mix of instructions inside an inner loop or other block of code

- But in practice the compiler may need your help
 - Choose a different compiler, optimization flags, etc.
 - Rearrange your code to make things more obvious
 - Using special functions ("intrinsics") or write in assembly
Outline

• Idealized and actual costs in modern processors
• Memory hierarchies
 • Use of microbenchmarks to characterized performance
• Parallelism within single processors
• Case study: Matrix Multiplication
 • Use of performance models to understand performance
 • Attainable lower bounds on communication
 • Simple cache model
 • Warm-up: Matrix-vector multiplication
• Naive vs optimized Matrix-Matrix Multiply
 • Minimizing data movement
 • Beating $O(n^3)$ operations
• Practical optimizations (continued next time)

Why Matrix Multiplication?

• An important kernel in many problems
 • Appears in many linear algebra algorithms
 • Bottleneck for dense linear algebra, including Top500
 • One of the 7 dwarfs / 13 motifs of parallel computing
 • Closely related to other algorithms, e.g., transitive closure on a graph using Floyd-Warshall
• Optimization ideas can be used in other problems
• The best case for optimization payoffs
• The most-studied algorithm in high performance computing

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods (Red Hot → Blue Cool)

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body
10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Note on Matrix Storage

- A matrix is a 2-D array of elements, but memory addresses are “1-D”

Conventions for matrix layout

- by column, or “column major” (Fortran default) \(A(i,j) \) at \(A+i+j*n \)
- by row, or “row major” (C default) \(A(i,j) \) at \(A+i*n+j \)
- recursive (later)

Column major (for now)

```
0 5 10 15
1 6 11 16
2 7 12 17
3 8 13 16
4 9 14 19
```

Row major

```
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
```

- Column major matrix in memory

```
0 1 2 3
4 5 6 7
```

- Row major matrix in memory

```
0 1 2 3
4 5 6 7
```

- Blue row of matrix is stored in red cachelines

Using a Simple Model of Memory to Optimize

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - \(m \) = number of memory elements (words) moved between fast and slow memory
 - \(t_m \) = time per slow memory operation
 - \(f \) = number of arithmetic operations
 - \(t_f \) = time per arithmetic operation

Computationally Intensive: Key to algorithm efficiency

\[q = \frac{f}{m} \text{ average number of flops per slow memory access} \]

- Minimum possible time = \(f \times t_f \) when all data in fast memory
- Actual time
 - \(f \times t_f + m \times t_m = f \times t_f + \left(1 + \frac{t_m}{t_f} \times \frac{1}{q} \right) \)

Machine Balance: Key to machine efficiency

- Larger \(q \) means time closer to minimum \(f \times t_f \)
 - \(q = \frac{t_m}{t_f} \) needed to get at least half of peak speed

Warm up: Matrix-vector multiplication

*implements \(y = y + A*x \)*

for \(i = 1:n \)
 for \(j = 1:n \)
 \(y(i) = y(i) + A(i,j)*x(j) \)

```
y(1) = y(1) + A(1,1)*x(1)
y(2) = y(2) + A(2,2)*x(2)
```

```
y(1) = y(1) + A(1,1)*x(1)
y(2) = y(2) + A(2,2)*x(2)
```
Warm up: Matrix-vector multiplication

[read x(1:n) into fast memory]
[read y(1:n) into fast memory]
for i = 1:n
 {read row i of A into fast memory}
 for j = 1:n
 y(i) = y(i) + A(i,j)*x(j)
 {write y(1:n) back to slow memory}

- m = number of slow memory refs = 3n + n^2
- f = number of arithmetic operations = 2n^2
- q = f / m = 2

Matrix-vector multiplication limited by slow memory speed

Modeling Matrix-Vector Multiplication

- Compute time for nxn = 1000x1000 matrix
- Time
 - f * t_f + m * t_m = f * t_f * (1 + t_m/t_f * 1/q)
 - 2n^2 * t_f * (1 + t_m/t_f * 1/2)
- For t_f and t_m, using data from R. Vuduc’s PhD (pp 351-3)
 - For t_m, use minimum-memory-latency / words-per-cache-line

<table>
<thead>
<tr>
<th>Machine</th>
<th>Clock MHz</th>
<th>Peak Mflops/s</th>
<th>Mem Lat (Min, Max) cycles</th>
<th>Linesize Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2</td>
<td>333</td>
<td>667</td>
<td>38</td>
<td>66</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>900</td>
<td>1800</td>
<td>28</td>
<td>200</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>500</td>
<td>600</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>800</td>
<td>800</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Power3</td>
<td>375</td>
<td>1500</td>
<td>35</td>
<td>139</td>
</tr>
<tr>
<td>Power4</td>
<td>1300</td>
<td>5200</td>
<td>60</td>
<td>10000</td>
</tr>
<tr>
<td>Itanium1</td>
<td>800</td>
<td>3200</td>
<td>36</td>
<td>85</td>
</tr>
<tr>
<td>Itanium2</td>
<td>900</td>
<td>3600</td>
<td>11</td>
<td>60</td>
</tr>
</tbody>
</table>

Validating the Model

- How well does the model predict actual performance?
 - Actual DGEMV: Most highly optimized code for the platform
 - Model sufficient to compare across machines
 - But under-predicting on most recent ones due to latency estimate
Naïve Matrix Multiply

(implements \(C = C + A \cdot B \))

for \(i = 1 \) to \(n \)
 - for \(j = 1 \) to \(n \)
 - for \(k = 1 \) to \(n \)
 \[C(i,j) = C(i,j) + A(i,k) \cdot B(k,j) \]

Algorithm has \(2n^3 = O(n^3) \) Flops and operates on \(3n^2 \) words of memory

\(q \) potentially as large as \(2n^3 / 3n^2 = O(n) \)

Matrix-multiply, optimized several ways

Speed of \(n \)-by-\(n \) matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Naïve Matrix Multiply on RS/6000

O(N^3) performance would have constant cycles/flop
Performance looks like O(N^{4.7})

Size 2000 took 5 days
12000 would take 1095 years

Slide source: Larry Carter, UCSD

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N-by-N matrices of b-by-b subblocks where
b=n / N is called the block size

for i = 1 to N
for j = 1 to N
 {read block C(i,j) into fast memory}
for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

So computational intensity
q = f / m
f is number of floating point operations, 2n^3 for this problem
m = amount memory traffic between slow and fast memory

m = N*n^2 * N^3 * (b^2) * (n/N)^3 * n^3
 = (2N + 2) * n^2

N = n / b for large n

So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)
Using Analysis to Understand Machines

The blocked algorithm has computational intensity \(q \approx b \)
- The larger the block size, the more efficient our algorithm will be
- Limit: All three blocks from A, B, C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large
- Assume your fast memory has size \(M_{\text{fast}} \)

\[
3b^2 \leq M_{\text{fast}}, \quad \text{so} \quad q = b \leq (M_{\text{fast}}/3)^{1/2}
\]

- To build a machine to run matrix multiply at 1/2 peak arithmetic speed of the machine, we need a fast memory of size

\[
M_{\text{fast}} = 3b^2 = 3q^2 = 3(t_m/t_f)^2
\]
- This size is reasonable for L1 cache, but not for register sets
- Note: analysis assumes it is possible to schedule the instructions perfectly

<table>
<thead>
<tr>
<th></th>
<th>(t_m/t_f)</th>
<th>required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultra 2i</td>
<td>24.8</td>
<td>14.8</td>
</tr>
<tr>
<td>Ultra 3</td>
<td>14</td>
<td>4.7</td>
</tr>
<tr>
<td>Pentium 3</td>
<td>8.25</td>
<td>0.9</td>
</tr>
<tr>
<td>Pentium3M</td>
<td>10</td>
<td>2.4</td>
</tr>
<tr>
<td>Power3</td>
<td>8.75</td>
<td>1.8</td>
</tr>
<tr>
<td>Power4</td>
<td>15</td>
<td>5.4</td>
</tr>
<tr>
<td>Itanium 1</td>
<td>36</td>
<td>31.1</td>
</tr>
<tr>
<td>Itanium2</td>
<td>5.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

 Limits to Optimizing Matrix Multiply

- The blocked algorithm changes the order in which values are accumulated into each \(C[i,j] \) by applying commutativity and associativity
 - Get slightly different answers from naïve code, because of roundoff - OK
- The previous analysis showed that the blocked algorithm has computational intensity:

\[
q = b \leq (M_{\text{fast}}/3)^{1/2}
\]

- There is a lower bound result that says we cannot do any better than this (using only associativity, so still doing \(n^3 \) multiplications)

\[
\text{Theorem (Hong & Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to } q = \Theta((M_{\text{fast}})^{1/2})
\]

- \#words moved between fast and slow memory = \(\Omega(n^3 / (M_{\text{fast}}^{3/2})) \)

Communication lower bounds for Matmul

- Hong/Kung theorem is a lower bound on amount of data communicated by matmul
 - Number of words moved between fast and slow memory (cache and DRAM, or DRAM and disk, or ...) = \(\Omega(n^3 / M_{\text{fast}}^{1/2}) \)
 - Cost of moving data may also depend on the number of "messages" into which data is packed
 - Eg: number of cache lines, disk accesses, ...
 - \#messages = \(\Omega(n^3 / M_{\text{fast}}^{1/2}) \)
 - Lower bounds extend to anything "similar enough" to 3 nested loops
 - Rest of linear algebra (solving linear systems, least squares...)
 - Dense and sparse matrices
 - Sequential and parallel algorithms, ...
 - More recent: extends to any nested loops accessing arrays
 - Need (more) new algorithms to attain these lower bounds...

Review of lecture 2 so far (and a look ahead)

- Hardware
 - Even simple programs have complicated behaviors
 - "Small" changes make execution time vary by orders of magnitude

- Algorithms (matmul as example)
 - Need simple model of hardware to guide design, analysis: minimize accesses to slow memory
 - If lucky, theory describing "best algorithm"
 - For \(O(n^2) \) sequential matmul, must move \(O(n^2/M_{\text{fast}}^{1/2}) \) words

- Software tools
 - How do I implement my applications and algorithms in most efficient and productive way?

- Applications
 - How to decompose into well-understood algorithms (and their implementations)

Layers

01/22/2015 CS267 - Lecture 2
Basic Linear Algebra Subroutines (BLAS)

- Industry standard interface (evolving)
- Vendors, others supply optimized implementations
- History
 - BLAS1 (1970s):
 - vector operations: dot product, saxpy (\(y = \alpha x + y\)), etc
 - \(m=2^n\), \(f=2^n\), \(q = f/m\) = computational intensity \(-1\) or less
 - BLAS2 (mid 1980s)
 - matrix-vector operations: matrix vector multiply, etc
 - \(m=n^2\), \(f=2n^2\), \(q\approx 2\), less overhead
 - somewhat faster than BLAS1
 - BLAS3 (late 1980s)
 - matrix-matrix operations: matrix multiply, etc
 - \(m \approx 3n^2\), \(f\propto n^3\), so \(q\) could be as large as \(n\), so BLAS3 is potentially much faster than BLAS2
- Good algorithms use BLAS3 when possible (LAPACK & ScaLAPACK)
 - See www.netlib.org/{lapack,scalapack}
 - More later in course

BLAS speeds on an IBM RS6000/590

Dense Linear Algebra: BLAS2 vs. BLAS3

- BLAS2 and BLAS3 have very different computational intensity, and therefore different performance

What if there are more than 2 levels of memory?

- Need to minimize communication between all levels
 - Between L1 and L2 cache, cache and DRAM, DRAM and disk…
- The tiled algorithm requires finding a good block size
 - Machine dependent
 - Need to “block” b x b matrix multiply in inner most loop
 - 1 level of memory \(\Rightarrow 3\) nested loops (naive algorithm)
 - 2 levels of memory \(\Rightarrow 6\) nested loops
 - 3 levels of memory \(\Rightarrow 9\) nested loops …
- Cache Oblivious Algorithms offer an alternative
 - Treat non matrix multiply as a set of smaller problems
 - Eventually, these will fit in cache
 - Will minimize # words moved between every level of memory hierarchy – at least asymptotically
 - “Oblivious” to number and sizes of levels
Recursive Matrix Multiplication (RMM) (1/2)

- C = \(C_{11} \), \(C_{12} \) = \(A \cdot B = A_{i,1} \cdot B_{11} + A_{i,2} \cdot B_{12} \)
- \(C_{21} \), \(C_{22} \) = \(A_{i,1} \cdot B_{11} + A_{i,2} \cdot B_{12} \)
- True when each \(A_{i,j} \) etc 1x1 or n/2 x n/2
- For simplicity: square matrices with n = 2^m
 - Extends to general rectangular case

```c
func C = RMM (A, B, n)
if n=1, C = A * B, else
{ 
  C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2) 
  C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2) 
  C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2) 
  C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) 
}
return
```

Recursive Matrix Multiplication (RMM) (2/2)

```c
func C = RMM (A, B, n)
if n=1, C = A * B, else
{ 
  C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2) 
  C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2) 
  C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2) 
  C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) 
}
return
```

Experience with Cache-Oblivious Algorithms

- In practice, need to cut off recursion well before 1x1 blocks
 - Call "micro-kernel" on small blocks
- Implementing a high-performance Cache-Oblivious code is not easy
 - Careful attention to micro-kernel is needed
- Using fully recursive approach with highly optimized recursive micro-kernel, Pingali et al report that they never got more than 2/3 of peak. (unpublished, presented at LACSI’06)
- Issues with Cache Oblivious (recursive) approach
 - Recursive Micro-Kernels yield less performance than iterative ones using same scheduling techniques
 - Pre-fetching is needed to compete with best code: not well-understood in the context of Cache-Oblivious codes
- More recent work on CARMA (UCB) uses recursion for parallelism, but aware of available memory, very fast (later)
Recursive Data Layouts

• A related idea is to use a recursive structure for the matrix
 • Improve locality with machine-independent data structure
 • Can minimize latency with multiple levels of memory hierarchy
 • There are several possible recursive decompositions depending on the order of the sub-blocks
 • This figure shows Z-Morton Ordering ("space filling curve")
 • See papers on "cache oblivious algorithms" and "recursive layouts"

Advantages:
• the recursive layout works well for any cache size
Disadvantages:
• The index calculations to find A[i,j] are expensive
• Implementations switch to column-major for small sizes

Strassen’s Matrix Multiply

• The traditional algorithm (with or without tiling) has O(n^3) flops
• Strassen discovered an algorithm with asymptotically lower flops
 • O(n^{2.81})
• Consider a 2x2 matrix multiply, normally takes 8 multiplies, 4 adds
 • Strassen does it with 7 multiplies and 18 adds

Let M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}

Let p1 = (a_{12} - a_{22}) \times (b_{21} + b_{22})

p2 = (a_{11} + a_{22}) \times (b_{11} + b_{22})

p3 = (a_{11} - a_{21}) \times (b_{11} + b_{12})

p4 = (a_{11} + a_{12}) \times b_{22}

Then:
 m_{11} = p1 + p2 - p4 + p6
 m_{12} = p4 + p5
 m_{21} = p6 + p7
 m_{22} = p2 - p3 + p5 - p7

Extends to nxn by divide & conquer

Other Fast Matrix Multiplication Algorithms

• World’s record was O(n^{2.37548...})
 • Coppersmith & Winograd, 1987
• New Record! 2.37548 reduced to 2.37293
 • Virginia Vassilevska Williams, UC Berkeley & Stanford, 2011
• Newer Record! 2.37293 reduced to 2.37286
 • Francois Le Gall, 2014

• Lower bound on #words moved can be extended to (some) of these algorithms
• Possibility of O(n^{2+\epsilon}) algorithm!
 • Cohr, Umans, Kleinberg, 2003
• Can show they all can be made numerically stable
 • D. Dumitriu, Holtz, Kleinberg, 2007
• Can do rest of linear algebra (solve Ax=b, Ax=\lambda x, etc) as fast, and numerically stably
 • D. Dumitriu, Holtz, 2008
• Fast methods (besides Strassen) may need unrealistically large n
Tuning Code in Practice

- Tuning code can be tedious
 - Lots of code variations to try besides blocking
 - Machine hardware performance hard to predict
 - Compiler behavior hard to predict

- Response: “Autotuning”
 - Let computer generate large set of possible code variations, and search them for the fastest ones
 - Used with CS267 homework assignment in mid 1990s
 - PHIPAC, leading to ATLAS, incorporated in Matlab
 - We still use the same assignment
 - We (and others) are extending autotuning to other dwarfs / motifs

- Still need to understand how to do it by hand
 - Not every code will have an autotuner
 - Need to know if you want to build autotuners

Search Over Block Sizes

- Performance models are useful for high level algorithms
 - Helps in developing a blocked algorithm
 - Models have not proven very useful for block size selection
 - too complicated to be useful
 - See work by Sid Chatterjee for detailed model
 - too simple to be accurate
 - Multiple multidimensional arrays, virtual memory, etc.
 - Speed depends on matrix dimensions, details of code, compiler, processor

What the Search Space Looks Like

A 2-D slice of a 3-D register-tile search space. The dark blue region was pruned.
(Platform: Sun Ultra-IIi, 333 MHz, 667 Mflop/s peak, Sun cc v5.0 compiler)

ATLAS (DGEMM n = 500)

- ATLAS is faster than all other portable BLAS implementations and it is comparable with machine-specific libraries provided by the vendor.

Source: Jack Dongarra
Optimizing in Practice

- Tiling for registers
 - loop unrolling, use of named “register” variables
- Tiling for multiple levels of cache and TLB
- Exploiting fine-grained parallelism in processor
 - superscalar, pipelining
- Complicated compiler interactions (flags)
- Hard to do by hand (but you’ll try)
- Automatic optimization an active research area
 - ASPIRE: aspire.eecs.berkeley.edu
 - BeBOP: bebop.cs.berkeley.edu
 - Weekly group meeting Mondays 1pm
 - PHIPAC: www.icsi.berkeley.edu/~bilmes/phipac
 - in particular tr-98-035.ps.gz
 - ATLAS: www.netlib.org/atlas

Removing False Dependencies

- Using local variables, reorder operations to remove false dependencies

  ```
  float f1 = b[i];
  float f2 = b[i+1];
  a[i] = f1 + c;
  a[i+1] = f2 * d;
  ```

With some compilers, you can declare a and b unaliased.

 - Done via “restrict pointers,” compiler flag, or pragma

Exploit Multiple Registers

- Reduce demands on memory bandwidth by pre-loading into local variables
  ```
  float f0 = filter[0];
  float f1 = filter[1];
  float f2 = filter[2];
  ```

  ```
  while( … ) {
    *res++ = f0*signal[0] + f1*signal[1] + f2*signal[2];
    signal++;
  }
  ```

  ```
  float f0 = filter[0];
  float f1 = filter[1];
  float f2 = filter[2];
  ```

  ```
  while( … ) {
    *res++ = f0*signal[0] + f1*signal[1] + f2*signal[2];
    signal++;
  }
  ```

Loop Unrolling

- Expose instruction-level parallelism
  ```
  float f0 = filter[0], f1 = filter[1], f2 = filter[2];
  float s0 = signal[0], s1 = signal[1], s2 = signal[2];
  ```

  ```
  do {
    signal += 3;
    s0 = signal[0];
    res[0] = f0*s1 + f1*s2 + f2*s0;
    s1 = signal[1];
    res[1] = f0*s2 + f1*s0 + f2*s1;
    s2 = signal[2];
    res[2] = f0*s0 + f1*s1 + f2*s2;
    res += 3;
  } while( … );
  ```
Expose Independent Operations

- Hide instruction latency
 - Use local variables to expose independent operations that can execute in parallel or in a pipelined fashion
 - Balance the instruction mix (what functional units are available?)

  ```
  \[ f_1 = f_5 \times f_9; \\
  f_2 = f_6 + f_{10}; \\
  f_3 = f_7 \times f_{11}; \\
  f_4 = f_8 + f_{12}; \]
  ```

Copy optimization

- Copy input operands or blocks
 - Reduce cache conflicts
 - Constant array offsets for fixed size blocks
 - Expose page-level locality
 - Alternative: use different data structures from start (if users willing)
 - Recall recursive data layouts

Locality in Other Algorithms

- The performance of any algorithm is limited by \(q \)
 - \(q = \text{"computational intensity"} = \#\text{arithmetic_ops} / \#\text{words_moved} \)
- In matrix multiply, we increase \(q \) by changing computation order
 - increased temporal locality
- For other algorithms and data structures, even hand-transformations are still an open problem
 - Lots of open problems, class projects

Summary of Lecture 2

- Details of machine are important for performance
 - Processor and memory system (not just parallelism)
 - Before you parallelize, make sure you're getting good serial performance
 - What to expect? Use understanding of hardware limits
- There is parallelism hidden within processors
 - Pipelining, SIMD, etc
- Machines have memory hierarchies
 - 100s of cycles to read from DRAM (main memory)
 - Caches are fast (small) memory that optimize average case
- Locality is at least as important as computation
 - Temporal: re-use of data recently used
 - Spatial: using data nearby to recently used data
- Can rearrange code/data to improve locality
 - Goal: minimize communication = data movement
Class Logistics

- Homework 0 posted on web site
 - Find and describe interesting application of parallelism
 - Due Friday Jan 30
 - Could even be your intended class project
- Please fill in on-line class survey
 - We need this to assign teams for Homework 1
- Please fill out on-line request for Stampede account
 - Needed for GPU part of assignment 2

Some reading for today (see website)

- Sourcebook Chapter 3, (note that chapters 2 and 3 cover the material of lecture 2 and lecture 3, but not in the same order).
- Web pages for reference:
 - BeBOP Homepage
 - BLAS (Basic Linear Algebra Subroutines), Reference for (unoptimized) implementations of the BLAS, with documentation.
 - LAPACK (Linear Algebra PACKage), a standard linear algebra library optimized to use the BLAS effectively on uniprocessors and shared memory machines (software, documentation and reports)
 - ScaLAPACK (Scalable LAPACK), a parallel version of LAPACK for distributed memory machines (software, documentation and reports)
 - Tuning Strassen's Matrix Multiplication for Memory Efficiency Mithuna S. Thottethodi, Siddhartha Chatterjee, and Alvin R. Lebeck in Proceedings of Supercomputing ’98, November 1998 postscript
 - Many related papers at bebop.cs.berkeley.edu