
3/16/15	

1	

CS267 Assignment 3:

 Parallelize Graph Algorithms for
de Novo Genome Assembly

Spring 2015

Problem statement

•  Input: A set of unique k-mers and their corresponding extensions.
•  k-mers are sequences of length k (alphabet is A/C/G/T).
•  An extension is a simple symbol (A/C/G/T/F).
•  The input k-mers form a de Bruijn graph, a special graph that is used to

represent overlaps between sequences of symbols.

•  Output: A set of contigs, i.e. connected components in the input de
Bruijn graph.

2

Example
•  Input: A set of unique k-mers and their corresponding extensions.
•  Example for k = 3:
•  Format: k-mer forward extension , backward extension

3

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

Example
•  Input: A set of unique k-mers and their corresponding extensions.

•  The input corresponds to a de Bruijn graph.

• Example for k = 3:

4

Sequence
of k-mers : GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

Sequence
of k-mers :

Sequence
of k-mers :

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

3/16/15	

2	

Example
•  Input: A set of unique k-mers and their corresponding extensions.

•  The input corresponds to a de Bruijn graph.

• Example for k = 3:

5

Sequence
of k-mers : GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

Sequence
of k-mers :

Sequence
of k-mers :

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

k-mers with “F” as an extension are start vertices

Example
•  Input: A set of unique k-mers and their corresponding extensions.

•  The input corresponds to a de Bruijn graph.

• Example for k = 3:

6

Sequence
of k-mers : GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

Sequence
of k-mers :

Sequence
of k-mers :

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  Consider k-mer: TCT
•  Concatenate last k-1 bases (CT) and forward extension (G) => CTG (following vertex)
•  Concatenate backward extension (A) and first k-1bases (TC) =>ATC (preceding vertex)
•  The graph is undirected, we can visit a vertex from both directions.

Example
7

Contig : GATCTGA

Sequence
of k-mers :

Contig : AACCG

Contig : AATGC GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

Sequence
of k-mers :

Sequence
of k-mers :

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  Input: A set of unique k-mers and their corresponding extensions.
•  The input corresponds to a de Bruijn graph.

• Example for k = 3:

•  Output: A set of contigs or equivalently the connected
components in the de Bruijn graph

Compact graph representation: hash table

8

•  The vertices are keys
•  The edges (neighboring vertices) are represented with a two-letter value

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

buckets entries

key: ATC forw_ext: T
back_ext: G � �

�
�

�
�
�
�
�
�

�
�
�

key: ACC forw_ext: G
back_ext: A �

key: AAC forw_ext: C
back_ext: F �

key: TGA forw_ext: F
back_ext: C �

key: GAT forw_ext: C
back_ext: F �

key: CTG forw_ext: A
back_ext: T �

key: TCT forw_ext: G
back_ext: A �

key: ATG forw_ext: C
back_ext: A �

key: AAT forw_ext: G
back_ext: F �

key: CCG forw_ext: F
back_ext: A �

key: TGC forw_ext: F
back_ext: A �

3/16/15	

3	

Serial algorithm
9

Algorithm 1 De Bruijn Graph Construction And Traversal
1: Input: A set of k-mers and their corresponding forward and backward extensions
2: Output: A set of contigs
3: /* Initialization */
4: hashTable CREATEHASHTABLE()
5: startNodesList CREATEEMPTYLIST()
6:
7: /* De Bruijn Graph Construction */
8: for each (k-mer, f orwardExt,backwardExt) in input do
9: ADDKMERTOHASHTABLE(hashTable,(k-mer, f orwardExt,backwardExt))

10: if (backwardExt is F) then
11: ADDKMERTOLIST(startNodesList,(k-mer, f orwardExt))
12: end if
13: end for
14:
15: /* De Bruijn Graph Traversal */
16: for each (k-mer, f orwardExt) in startNodesList do
17: currentContig CREATENEWSEQUENCE(k-mer)
18: currentForwardExtension f orwardExt
19: while (currentForwardExtension is not F) do
20: ADDBASETOSEQUENCE(currentForwardExtension,currentContig)
21: currentKmer LASTKBASES(currentContig)
22: currentForwardExtension LOOKUP(hashTable,currentKmer)
23: end while
24: STORECONTIG(currentContig)
25: end for

if we gave you a real graph that doesn’t fit in a single node’s memory you’d have to spend a lot of
computational cycles.

Your code should be generating the same set of contigs as the serial version we give you.

Submission
You may work in groups of 2 or 3. All the non-EECS students should be paired with EECS students. The
number of non-EECS students is a little less than one third of the total enrollment, so some teams will not
have a non-EECS student. Email cs267.spr15@gmail.com your report and source codes. We need to
be able to build and execute your implementation to receive credit. It should be a zip or tar file of a directory
that contains both your report and your Makefile and source code. Spell out in your report what Makefile
target we are to build.

Here is the list of items you might show in your report:

• A description of your distributed data structures and parallel algorithms.

• A description of the computational and “communication” motifs of the parallel algorithms.

• A description of the design choices/optimizations that you tried and how did they affect the perfor-
mance.

• A description of how you avoided race conditions.

• Speedup plots that show how closely your parallel code approaches the idealized p-times speedup in
the two experimental scenarios described in the previous section.

CS 267, Spring 2015, HW3 4

Graph construction
10

•  The vertices are keys
•  The edges (neighboring vertices) are represented with a two-letter value

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

buckets entries

key: ATC forw_ext: T
back_ext: G � �

�
�

�
�
�
�
�
�

�
�
�

key: ACC forw_ext: G
back_ext: A �

key: AAC forw_ext: C
back_ext: F �

key: TGA forw_ext: F
back_ext: C �

key: GAT forw_ext: C
back_ext: F �

key: CTG forw_ext: A
back_ext: T �

key: TCT forw_ext: G
back_ext: A �

key: ATG forw_ext: C
back_ext: A �

key: AAT forw_ext: G
back_ext: F �

key: CCG forw_ext: F
back_ext: A �

key: TGC forw_ext: F
back_ext: A �

Graph traversal
11

GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  We pick a start vertex and we initiate a contig.

Contig: A A T

Graph traversal
12

GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  We add the forward extension to the contig.

Contig: A A T G

3/16/15	

4	

Graph traversal
13

GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  We take the last k bases of the contig and look them up in the hash table.

Contig: A A T G

Graph traversal
14

GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  We add the new forward extension to the contig.

Contig: A A T G C

Graph traversal
15

GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  We take the last k bases of the contig and look them up in the hash table.

Contig: A A T G C

Graph traversal
16

GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

•  We terminate the current contig since the forward extension is an “F”.

Contig: A A T G C

3/16/15	

5	

17

Contig : GATCTGA

Sequence
of k-mers :

Contig : AACCG

Contig : AATGC GAT ATC TCT CTG TGA

AAC ACC CCG

AAT ATG TGC

Sequence
of k-mers :

Sequence
of k-mers :

AAC CF
ATC TG
ACC GA
TGA FC
GAT CF
AAT GF
ATG CA
TCT GA
CCG FA
CTG AT
TGC FA

Graph traversal
•  We iterate until we exhaust all start vertices: we have found all the contigs.

18

Parallelization hints

1.  Distribute the hash table among the processors.
•  UPC is convenient: Store the hash table in the shared address space.
•  You may want to use upc_all_alloc().

2.  Each processor stores part of the input in the distributed hash table.
•  What happens if two processors try to write the same bucket at the same time?
•  We need to avoid race conditions (UPC provides locks and global atomics).

3.  We want to traverse the graph in parallel.
•  Can we determine independent traversals by examining the input?
•  How can we distribute the work among processors?

