Recap of Last Lecture
• 4 kinds of simulations
 • Discrete Event Systems
 • Particle Systems
 • Ordinary Differential Equations (ODEs)
 • Partial Differential Equations (PDEs) (today)
• Common problems:
 • Load balancing
 • May be due to lack of parallelism or poor work distribution
 • Statically, divide grid (or graph) into blocks
 • Dynamically, if load changes significantly during run
 • Locality
 • Partition into large chunks with low surface-to-volume ratio
 • To minimize communication
 • Distributed particles according to location, but use irregular spatial decomposition (e.g., quad tree) for load balance
 • Constant tension between these two
 • Particle-Mesh method: can’t balance particles (moving), balance mesh (fixed) and keep particles near mesh points without communication

Partial Differential Equations
PDEs

Continuous Variables, Continuous Parameters
Examples of such systems include
• Elliptic problems (steady state, global space dependence)
 • Electrostatic or Gravitational Potential: Potential(position)
• Hyperbolic problems (time dependent, local space dependence):
 • Sound waves: Pressure(position,time)
• Parabolic problems (time dependent, global space dependence)
 • Heat flow: Temperature(position, time)
 • Diffusion: Concentration(position, time)

Global vs Local Dependence
• Global means either a lot of communication, or tiny time steps
• Local arises from finite wave speeds: limits communication

Many problems combine features of above
• Fluid flow: Velocity,Pressure,Density(position,time)
• Elasticity: Stress,Strain(position,time)
Example: Deriving the Heat Equation

Consider a simple problem:
- A bar of uniform material, insulated except at ends
- Let \(u(x,t) \) be the temperature at position \(x \) at time \(t \)
- Heat travels from \(x-h \) to \(x+h \) at rate proportional to:

\[
\frac{d u(x,t)}{dt} = C \left(\frac{u(x-h,t)-u(x,t)}{h} - \frac{u(x,t)-u(x+h,t)}{h} \right)
\]

As \(h \to 0 \), we get the heat equation:

\[
\frac{d u(x,t)}{dt} = C \frac{d^2 u(x,t)}{dx^2}
\]

Explicit Solution of the Heat Equation

- Use “finite differences” with \(u_{j,i} \) as the temperature at:
 - time \(t = i \delta \) (\(i = 0,1,2,... \)) and position \(x = jh \) (\(j = 0,1,...,N=1/h \))
 - initial conditions on \(u_{j,0} \)
 - boundary conditions on \(u_{0,i} \) and \(u_{N,i} \)
- At each timestep \(i = 0,1,2,... \)
 - This corresponds to:
 - Matrix-vector-multiply by \(T \) (next slide)
 - Combine nearest neighbors on grid

\[
u_{j,i+1} = z u_{j-1,i} + (1-2z) u_{j,i} + z u_{j+1,i}\]

where \(z = C \delta^2 / h^2 \)

Details of the Explicit Method for Heat

\[
\frac{d u(x,t)}{dt} = C \frac{d^2 u(x,t)}{dx^2}
\]

- Discretize time and space using explicit approach (forward Euler) to approximate time derivative:

\[
(u(x,t+\delta t) - u(x,t))/\delta t = C \left(\frac{u(x-h,t)-u(x,t)}{h} - \frac{u(x,t)-u(x+h,t)}{h} \right) / h
\]

Solve for \(u(x,t+\delta t) \):

\[
u(x,t+\delta t) = u(x,t) + C \delta t / h \left(u(x-h,t) - 2u(x,t) + u(x+h,t) \right)
\]

- Let \(z = C \delta^2 / h^2 \), simplify:

\[
u(x,t+\delta) = z u(x-h,t) + (1-2z) u(x,t) + z u(x+h,t)
\]

- Change variable \(x \) to \(jh \), \(t \) to \(i \delta \), and \(u(x,t) \) to \(u[j,i] \)

\[
u[j,i+1] = z u[j-1,i] + (1-2z) u[j,i] + z u[j+1,i]
\]

Matrix View of Explicit Method for Heat

- \(u[j,i+1] = z u[j-1,i] + (1-2z) u[j,i] + z u[j+1,i] \), same as:
- \(u[\cdot, i+1] = T \cdot u[\cdot, i] \) where \(T \) is tridiagonal:

\[
T = \begin{pmatrix}
1-2z & z & 0 & 0 & \ldots \\
z & 1-2z & z & 0 & \ldots \\
z & z & 1-2z & z & \ldots \\
z & z & z & 1-2z & \ldots \\
z & \ldots & \ldots & \ldots & \ldots
\end{pmatrix}
\]

Graph and "3 point stencil"

- \(L \) called Laplacian (in 1D)
- For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal
 - More on the matrix/grid views later
Parallelism in Explicit Method for PDEs

- Sparse matrix vector multiply, via Graph Partitioning
- Partitioning the space (x) into p chunks
 - good load balance (assuming large number of points relative to p)
 - minimize communication (least dependence on data outside chunk)
- Generalizes to
 - multiple dimensions.
 - arbitrary graphs (arbitrary sparse matrices).

- Explicit approach often used for hyperbolic equations
 - Finite wave speed, so only depend on nearest chunks
- Problem with explicit approach for heat (parabolic):
 - numerical instability.
 - solution blows up eventually if \(z = C \delta^2 / h^2 > .5 \)
 - need to make the time step \(\delta \) very small when \(h \) is small: \(\delta < .5h^2 / C \)

Implicit Solution of the Heat Equation

\[
\frac{d u(x,t)}{dt} = C \frac{d^2 u(x,t)}{dx^2}
\]

- Discretize time and space using implicit approach (Backward Euler) to approximate time derivative:
 \[
 (u(x,t+\delta) - u(x,t))/\delta t = C'(u(x+h,t+\delta) - 2u(x,t+\delta) + u(x+h,t+\delta))/h^2
 \]
 \[
 u(x,t) = u(x,t+\delta) - C\delta/h^2 (u(x+h,t+\delta) - 2u(x,t+\delta) + u(x+h,t+\delta))
 \]
- Let \(z = C\delta/h^2 \) and change variable \(t \) to \(i\delta \), \(x \) to \(j\delta \) and \(u(x,t) \) to \(u[i,j] \)
 \((I + zL) u[i+1,j] = u[i,j] \)
- Let \(L = I - zL \) and change variable \(t \) to \(i\delta \), \(x \) to \(j\delta \) and \(u(x,t) \) to \(u[i,j] \)
 \((I + zL^2) u[i+1,j] = (I - zL^2) u[i,j] \)
- Where \(L \) is identity and \(L \) is Laplacian as before

\[
L = \begin{pmatrix}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 \\
0 & -1 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 2 \\
-1 & 0 & 0 & \cdots & -1 \\
\end{pmatrix}
\]

Instability in Solving the Heat Equation Explicitly

- The previous slide derived Backward Euler
 \((I + zL) u[i+1,j] = u[i,j] \)
- But the Trapezoidal Rule has better numerical properties:
 \((I + (z/2)L) u[i+1,j] = (I - (z/2)L) u[i,j] \)
- Again \(I \) is the identity matrix and \(L \) is:

\[
L = \begin{pmatrix}
2 & -1 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \cdots & 0 & \cdots & 0 \\
-1 & 2 & -1 & 0 & \cdots & 0 \\
0 & -1 & 2 & \ddots & \ddots & \ddots & \ddots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & 0 & \cdots & 2 & -1 & -1 \\
\end{pmatrix}
\]

- Other problems (elliptic instead of parabolic) yield Poisson’s equation \(Lx = b \) in 1D

\[
2/4/2014 \quad \text{CS267 Lecture 5} \quad 9
\]

\[
2/4/2014 \quad \text{CS267 Lecture 5} \quad 10
\]

\[
2/4/2014 \quad \text{CS267 Lecture 5} \quad 11
\]

\[
2/4/2014 \quad \text{CS267 Lecture 5} \quad 12
\]
Relation of Poisson to Gravity, Electrostatics

- Poisson equation arises in many problems
- E.g., force on particle at \((x,y,z)\) due to particle at \((0,0,0)\) is \(-\frac{(x,y,z)}{r^3}\), where \(r = \sqrt{x^2 + y^2 + z^2}\)
- Force is also gradient of potential \(V = -\frac{1}{r}\) = \(-\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}, \frac{\partial V}{\partial z}\) = \(-\nabla V\)
- \(V\) satisfies Poisson’s equation (try working this out!)

\[
\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0
\]

2D Implicit Method

- Similar to the 1D case, but the matrix \(L\) is now

\[
\begin{pmatrix}
4 & -1 & -1 & \\
-1 & 4 & -1 & -1 \\
-1 & -1 & 4 & -1 \\
-1 & -1 & -1 & 4
\end{pmatrix}
\]

Graph and "5 point stencil"

- Multiplying by this matrix (as in the explicit case) is simply nearest neighbor computation on 2D grid.
- To solve this system, there are several techniques.

Algorithms for 2D (3D) Poisson Equation (N vars)

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Serial</th>
<th>PRAM</th>
<th>Memory</th>
<th>#Procs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dense LU</td>
<td>(N^3)</td>
<td>(N)</td>
<td>(N^2)</td>
<td>(N^2)</td>
</tr>
<tr>
<td>Band LU</td>
<td>(N^2 (N^{1/3}))</td>
<td>(N)</td>
<td>(N^{2/3} (N^{1/3}))</td>
<td>(N(N^{1/3}))</td>
</tr>
<tr>
<td>Jacobi</td>
<td>(N^2)</td>
<td>(N (N^{1/2}))</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Explicit Inv.</td>
<td>(N^2)</td>
<td>(\log N)</td>
<td>(N^2)</td>
<td>(N^2)</td>
</tr>
<tr>
<td>Conj.Gradients</td>
<td>(N^{2/3} (N^{2/3}))</td>
<td>(N^{2/3} (N^{1/3}))</td>
<td>(\log N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Red/Black SOR</td>
<td>(N^{2/3} (N^{2/3}))</td>
<td>(N^{2/3} (N^{1/3}))</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Sparse LU</td>
<td>(N^2 (N))</td>
<td>(N^{2/3} (N^{2/3}))</td>
<td>(N^{2/3} (N^{2/3}))</td>
<td>(N)</td>
</tr>
<tr>
<td>FFT</td>
<td>(N^{2/3} (N^{2/3}))</td>
<td>(N)</td>
<td>(\log^2 N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Multigrid</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Lower bound</td>
<td>(N)</td>
<td>(\log N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
</tbody>
</table>

All entries in “Big-Oh” sense (constants omitted)

PRAM is an idealized parallel model with zero cost communication

Decision tree to help choose algorithms:

- Dense LU: Gaussian elimination; works on any N-by-N matrix.
- Band LU: Exploits the fact that \(T \) is nonzero only on \(\sqrt{N} \) diagonals nearest main diagonal.
- Jacobi: Essentially does matrix-vector multiply by \(T \) in inner loop of iterative algorithm.
- Explicit Inverse: Assume we want to solve many systems with \(T \), so we can precompute and store inv(\(T \)) ”for free”, and just multiply by it (but still expensive).
- Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of \(T \) that Jacobi does not.
- Implicit Inverse: Assume we want to solve many systems with \(T \), so we can precompute and store inv(\(T \)) ”for free”, and just multiply by it (but still expensive).
- Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits mathematical properties of \(T \) that Jacobi does not.
- Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet different mathematical properties of \(T \). Used in multigrid schemes.
- Sparse LU: Gaussian elimination exploiting particular zero structure of \(T \).
- FFT (Fast Fourier Transform): Works only on matrices very like \(T \).
- Multigrid: Also works on matrices like \(T \), that come from elliptic PDEs.
- Lower Bound: Serial (time to print answer); parallel (time to combine \(N \) inputs).
- Details in class notes and www.cs.berkeley.edu/~demmel/ma221.
Mflop/s Versus Run Time in Practice

- Problem: Iterative solver for a convection-diffusion problem; run on a 1024-CPU NCUBE-2.

<table>
<thead>
<tr>
<th>Solver</th>
<th>Flops</th>
<th>CPU Time(s)</th>
<th>Mflop/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jacobi</td>
<td>3.82x10^{12}</td>
<td>2124</td>
<td>1800</td>
</tr>
<tr>
<td>Gauss-Seidel</td>
<td>1.21x10^{12}</td>
<td>885</td>
<td>1365</td>
</tr>
<tr>
<td>Multigrid</td>
<td>2.13x10^9</td>
<td>7</td>
<td>318</td>
</tr>
</tbody>
</table>

- Which solver would you select?

Summary of Approaches to Solving PDEs

- As with ODEs, either explicit or implicit approaches are possible
 - Explicit, sparse matrix-vector multiplication
 - Implicit, sparse matrix solve at each step
 - Direct solvers are hard (more on this later)
 - Iterative solves turn into sparse matrix-vector multiplication
 - Graph partitioning
 - Graph and sparse matrix correspondence:
 - Sparse matrix-vector multiplication is nearest neighbor "averaging" on the underlying mesh
 - Not all nearest neighbor computations have the same efficiency
 - Depends on the mesh structure (nonzero structure) and the number of Flops per point.

Comments on practical meshes

- Regular 1D, 2D, 3D meshes
 - Important as building blocks for more complicated meshes
- Practical meshes are often irregular
 - Composite meshes, consisting of multiple "bent" regular meshes joined at edges
 - Unstructured meshes, with arbitrary mesh points and connectivities
 - Adaptive meshes, which change resolution during solution process to put computational effort where needed

Parallelism in Regular meshes

- Computing a Stencil on a regular mesh
 - need to communicate mesh points near boundary to neighboring processors.
 - Often done with ghost regions
 - Surface-to-volume ratio keeps communication down, but
 - Still may be problematic in practice

Implemented using "ghost" regions.
 Adds memory overhead
Composite mesh from a mechanical structure

Converting the mesh to a matrix

Example of Matrix Reordering Application

Irregular mesh: NASA Airfoil in 2D (direct solution)
Irregular mesh: Tapered Tube (multigrid)

Example of Prometheus meshes

Adaptive Mesh Refinement (AMR)

• Adaptive mesh around an explosion
• Refinement done by estimating errors; refine mesh if too large
• Parallelism
• Mostly between “patches,” assigned to processors for load balance
• May exploit parallelism within a patch
• Projects:
 • Titanium (http://www.cs.berkeley.edu/projects/titanium)
 • Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL

Source of Unstructured Finite Element Mesh: Vertebra

Study failure modes of trabecular Bone under stress

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Methods: μFE modeling (Gordon Bell Prize, 2004)

Mechanical Testing

Source: Mark Adams, PPPL

E, εyield, σult, etc.

Micro-Computed Tomography

μCT @ 22 μm resolution

3D image

μFE mesh

2.5 mm cube

44 μm elements

Up to 537M unknowns

Up to 537M unknowns
Adaptive Mesh

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement)
See: http://www.llnl.gov/CASC/SAMRAI/

Challenges of Irregular Meshes

- How to generate them in the first place
 - Start from geometric description of object
 - Triangle, a 2D mesh partitioner by Jonathan Shewchuk
 - 3D harder!
- How to partition them
 - ParMetis, a parallel graph partitioner
- How to design iterative solvers
 - PETSc, a Portable Extensible Toolkit for Scientific Computing
 - Prometheus, a multigrid solver for finite element problems on irregular meshes
- How to design direct solvers
 - SuperLU, parallel sparse Gaussian elimination
- These are challenges to do sequentially, more so in parallel

Summary – sources of parallelism and locality

- Current attempts to categorize main “kernels” dominating simulation codes
- “Seven Dwarfs” (P. Colella)
 - Structured grids
 - including locally structured grids, as in AMR
 - Unstructured grids
 - Spectral methods (Fast Fourier Transform)
 - Dense Linear Algebra
 - Sparse Linear Algebra
 - Both explicit (SpMV) and implicit (solving)
 - Particle Methods
 - Monte Carlo/Embarrassing Parallelism/Map Reduce (easy!)

What do commercial and CSE applications have in common?

Motif/Dwarf: Common Computational Methods (Red Hot → Blue Cool)