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ABSTRACT 

Multi-core processors are now common but musical and 
audio applications that take advantage of multiple cores are 
rare. The most popular music software programming 
environments are sequential in character and provide only 
a modicum of support for the efficiencies to be gained 
from parallelization. We provide a brief summary of 
existing facilities in the most popular languages and 
provide examples of parallel implementations of some key 
algorithms in computer music such as partitioned 
convolution and non-negative matrix factorization NMF.  
We follow with a brief description of the SEJITS approach 
to providing support between the productivity layer 
languages used by musicians and related domain experts 
and efficient parallel implementations.  We also consider 
the importance of I/O in computer architectures for music 
and audio application. We lament the fact that current GPU 
architectures as delivered in desk and laptop processors are 
not properly harnessed for low-latency real-time audio 
applications. 

1. INTRODUCTION 

Concerns with energy consumption and heat dissipation 
have put the squeeze on processor clock rates and the 
move to multi- and many-core computer systems appears 
to be the only viable way to improve computing 
performance. Multi-core CPUs and many-core GPUs are 
now widely available in consumer desk and lap-top 
systems, yet music applications, as with nearly the entire 
landscape of applications,  have yet to provide much in the 
way of efficiency via parallelism.    
 The most widely used software environments in 
the interactive computer music community, 
Max/MSP/Jitter, PD, SuperCollider, and CHUCK are 
fundamentally sequential programming paradigms.  These 
environments have exploited multi-core systems by 
running copies of the program in separate threads. The 
operating system in turn then schedules the threads on the 
different cores.   
 With the client-server architecture of the 
SuperCollider one core is typically identified as the client 
and the remaining cores are servers thus providing a 

rudimentary mechanism for coordination.   
 In the PD environment Miller Puckette (Puckette 
2009) has provided a PD~ abstraction which allows one to 
embed a number of PD patches, each running on separate 
threads, into a master patch that handles audio I/O. 
 Max/MSP provides some facilities for parallelism 
within its poly~ abstraction mechanism. The poly~ object 
allows one to encapsulate a single copy of a patcher inside 
of its object box and it automatically generates copies that 
can be assigned to a user specified number of threads 
which in turn are allocated to different cores by the 
operating system. This mechanism has the flavor of data 
parallelism and indeed the traditional musical abstractions 
of voices, tracks, lines, and channels can make effective 
use of it. 
  We also hasten to mention Yann Orlarey’s efforts 
to automatically parallelize FAUST (2009). 
 We now consider two example parallel 
implementations, one with real-time constraints and 
another that uses a GPU. 

2. PARALLEL PARTITIONED CONVOLUTION 

2.1. Background 

Partitioned convolution is an efficient method of 
performing low-latency convolution with a long FIR filter.  
A typically use is in convolution-based reverb where the 
impulse response represents the reverberations of a large 
hall, small room, or other interesting environment. More 
creative uses exists as well, such as applying a drum sound 
as the impulse response to create rich, percussive sounds 
out of recordings of mundane tapping (such as on a table 
or chair).    
 An algorithmic approach to partitioned convolution 
was introduced by Gardner in (Gardner 1995) with a set 
partitioning of exponentially increasing block sizes.  While 
this method is much more efficient than direct convolution, 
it misses out on the benefits of reusing the FFTs taken for 
each block size.  Garcia (2002) demonstrates the use of a 
frequency delay line (FDL) for each block size, which 
encourages FFT reuse among blocks of the same size.  He 
also develops an algorithm to arrive at a theoretically 
optimal partitioning given a desired latency and impulse 
response length. Adriaensen (2006) in his jconv has used 



non-uniform block sizes for low latency convolution 
reverb applications. 
 
2.2. Our Approach 

The implementation of partitioned convolution that we are 
developing puts more emphasis on real-time guarantees 
and efficiency along with utilizing the multiple cores of 
parallel processors. Figure 1 shows an example 
partitioning with 3 FDLs.  The first FDL contains blocks 
equal to the desired latency. The bottom graph shows how 
each FDL is scheduled in a separate thread and allowed to 
compute for the amount of time associated with its block 
size.  This gives a total latency of 2N/fs, where fs is the 
sample rate, since the input buffer of the first FDL must be 
filled with N samples then we compute for time N/fs. 
 

 
 
Figure 1. Top - An example of slicing an impulse response up 
into multiple FDLs.  Bottom -  The thread for each FDL is 
allowed to compute for as long as it takes to fill its next buffer. 
 

The real-time threads of each FDL can run in 
parallel on a distinct processor core, until synchronization 
and buffering is required at each horizontal boundary in 
the scheduling diagram. In addition to the parallelism 
afforded by FDL threading, many-core system can exploit 
data-parallelism to compute individual FFTs and complex 
vector multiplies on multiple cores.    
 Our approach to coming up with a "best" 
partitioning does not focus on reducing the total number of 
operations or even reducing overall compute time.  This is 
because we focus on making real-time (as opposed to 
throughput) guarantees for our implementation.  Therefore, 
we measure a worst-case execution time (WCET) for each 
size of FDL by polluting the cache or measuring while 
other processes are running.  Only then can we reason 
about what partitioning scheme would behave best in real-
time for a given latency, impulse response length, and 
machine.  
 We have developed an Audio Unit, a Max/MSP 
external, and a portable Portaudio implementation.  We 
expect this work to enable us to apply long impulse 
responses to many (100+) channels in real-time. 

3. ACCELERATING NON-NEGATIVE MATRIX 
FACTORIZATION 

3.1. The Algorithm 

Here we describe our efforts to speed up non-negative 
matrix factorization (NMF), an unsupervised learning 
technique that has been used in audio source separation 
and parts-based analysis (Lee et al 1999, Virtanen 2007).  
NMF can be used for audio source separation by 
decomposing a spectrogram matrix into two matrices 
which contain source-wise spectral contributions and time-
varying gains.   
 NMF can be phrased as an optimization problem in 
which we attempt to find two matrices, W and H, with 
non-negative values whose product approximates the input 
matrix, X, with minimal error, i.e. 

€ 

X ≈WH . 
 We use a matrix divergence cost function to 
calculate the error and minimize this cost function with 
respect to W and H using multiplicative updates (eq. 1), 
which are introduced in (Lee et al 1999).  
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In the above, division is carried out element-wise, ".*'' is 
element-wise multiplication, and 1 represents a matrix of 
ones and is used to compute row and column sums.  
 The details of our approach to drum track extraction 
using the above updates are covered in (Battenberg 2008). 
Although these updates are simple to implement and 
efficient compared to more complicated optimization 
strategies, they can still take a very long time to converge 
and completely dominate the computation time of a 
source-separation task. Therefore, NMF is an important 
computational procedure to optimize.  We have 
implemented NMF using CUDA to target highly parallel 
graphic processors and OpenMP to target multi-core 
CPUs. 

3.2. Implementations 

3.2.1. CUDA 

CUDA is the API used to program Nvidia GPUs for 
general-purpose computations. The hardware on a CUDA-
compatible GPU can greatly accelerate data-parallel 
computations. For example, for a single-precision matrix-
matrix multiply, the current CUDA BLAS (CUBLAS) can 
achieve up to 375 Gflops/s on the GTX 280 GPU, while 
the Intel MKL BLAS only achieves 38 Gflops/s on a 
Core2 Duo 2.67GHz CPU (Volkov et al 2008).  
 In our CUDA implementation of NMF, we use the 
highly tuned CUBLAS for matrix multiplication (which 
makes up the bulk of the computation) and an optimized 
routine to compute array sums.   



3.2.2. OpenMP 

OpenMP is an API that simplifies the process of 
parallelizing C code for multi-core CPUs. We use 
OpenMP pragmas to parallelize for-loops and the multi-
threaded Intel MKL matrix multiply routines in our C with 
OpenMP implementation. 
 
The details of both implementations are covered in 
(Battenberg 2009).  

3.3. Performance Results 

The chart in Figure 2 shows the execution time (smaller is 
better) for various implementations of NMF on different 
architectures. The CUDA version runs over 30 times faster 
on a GTX 280 GPU than the Matlab version runs on a 
Core 2 Duo T9300.  The OpenMP version runs over 7 
times faster on a dual-socket Core i7 920 than the Matlab 
version.  

 

Figure 2. Running time comparison for 200 iterations of 30-
source NMF run on 20 seconds of audio data. 

Although the CUDA version performs much better, 
it is important to point out that writing the CUDA 
implementation took almost 10 times as long as writing the 
OpenMP version. Therefore, for most programs, CUDA 
should be reserved for only the most compute-intensive 
routines. 

4. BRIDGING THE GAP 

As we just noted, efficient parallel code is not easy to 
develop. Our music and audio languages should provide 
mechanisms that help exploit parallelization without the 
encumbering details of the efficiency layer 
implementation.  In the Par Lab at UC Berkeley there is 
promising research on an idea know as Selective, 
Embedded Just-In Time Specialization (SEJITS) 
(Catanzaro et al 2009).  Let’s use the example above that 
implemented, in CUDA, non-negative matrix factorization, 
a key component in music information retrieval (MIR) 
systems. 

  A music researcher would write MIR software in a 
productive and expressive scripting language such as 
PYTHON or RUBY and express operations on time-
frequency representations like the multiplication and 
division in the example above in the scripting language.  
This scripted version of the software would remain as the 
portable source code. When the script is run on a particular 
architecture SEJITS determines if efficient 
implementations of selected code segments are available 
and if so generates the appropriate code in an efficiency 
layer language like C, Cilk, C++, OpenCL, or  CUDA as in 
this example.   

5. BALANCED ARCHITECTURE COMPUTING 

Balancing Load/Store rates and arithmetic unit rates is key 
to achieving high performance in modern computer 
architectures. This problem is commonly framed in terms 
of load/store throughput to memory. For current music and 
media processing applications especially where low-
latency is important it is necessary to also consider 
balancing data flows from the I/O system. The industry is 
currently focused on optimizing systems with video I/O, 
usually with emphasis on output and typically on a small 
number of outputs corresponding to monitor ports. The 
resulting GPU architectures aren't very effective in audio 
applications with a high input and output stream count 
typical of wave-field, beam-forming microphone and 
speaker array applications. They also don't address the 
trend towards  higher gesture information rates from high 
resolution multitouch surfaces, and  time-of-flight 3D 
cameras. 

We recognized this need for balanced architectures 
from the beginning of CNMAT in 1989 and developed our 
early real-time performance software on the Reson8 
machine (Barrière et al 1989) which was optimized for 
musical applications. The Reson8 employed 7 24-bit 
processors connected via dual-port RAM to a master 
processor. This processor could read I/O from any 
processor in a single instruction cycle time and broadcast 
to all with a single cycle. Each processor had its own SSI 
port capable for 8-channels of digital I/O. 

When the clock rates of DSP processors started to 
lag mainstream general purpose processors we moved to 
develop on SGI Indigo and Indy which had high 
performance multichannel audio I/O and a unique bus that 
synchronized all video and audio peripherals to the system 
clock. The REACT hard real-time scheduling of SGI IRIX 
provided the means to achieve the low latency high 
performance potential of the hardware. We explored 
multiprocessor musical applications using the two 
processor SGI Octane which also had high performance 
I/O to support digital video, computer graphics and audio 
simultaneously. 

As SGI's CPU performance fell behind mainstream 
processors we moved to mainstream PowerPC and Intel 



desktop and laptop machines. Noticing performance 
bottlenecks and resource contention on the buses proposed 
with these machines we developed our own multichannel 
audio I/O hardware using FPGA's and Ethernet 
connectivity. These were extended to include gesture 
acquisition and clock synchronization and we have 
demonstrated scaling comfortably to hundreds of channels.  

The recent interest in multicore machines presents 
new challenges because I/O is now bottlenecked at the 
boundary between the CPU core and off chip I/O sources 
and sinks. We would like to see more per CPU support for 
timely I/O and more pins allocated to I/O and are building 
demonstration application to explore the associated design 
tradeoffs. We will explore the idea that direct I/O into each 
core may be a useful way of avoiding cache interaction and 
contentions problems as we observed in our work on the 
Reson8. 

6. CONCLUSIONS 

On the horizon is a diversity of many-core architectures 
with varying amounts of homogeneity. The SEJITS 
approach has promise for providing portability across the 
rapidly evolving and likely rough terrain of new computer 
architectures, compilers, and code generation strategies.  
For SEJITS to do its job the scripting language must have 
mechanisms for introspection and meta-programming.  We 
need to examine our languages in this regard. 

The example MIR application of SEJITS we 
provide is a non-real-time one and in no way can we stop 
there.  We need to bring temporal criteria to efficiency 
layer programming and pass performance behavior stats to 
a SEJITS like environments to find optimal 
implementations.  

In the work on parallel partitioned convolution we 
provide the opportunity to auto-tune not only raw 
performance but also temporal performance and timely 
behavior.  The accelerated non-negative matrix 
factorization demonstrated the power of the current 
generation of GPUs to provide significant speedups.   
These results along with many other non-video 
applications of GPUs call out for better I/O facilities on 
GPU architectures that would better support low-latency 
performance.   We need GPU CPU combinations to be  
more flexible with I/O.  The reality is that we will need 
more I/O pins to our tiles of CPUs.  
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