
ADVANCES IN THE PARALLELIZATION OF MUSIC AND AUDIO
APPLICATIONS

Eric Battenberg, Adrian Freed, & David Wessel
The Center for New Music and Audio Technologies and

The Parallel Computing Laboratory
University of California Berkeley

{eric, adrian, wessel}@cnmat.berkeley.edu

ABSTRACT

Multi-core processors are now common but musical and
audio applications that take advantage of multiple cores are
rare. The most popular music software programming
environments are sequential in character and provide only
a modicum of support for the efficiencies to be gained
from parallelization. We provide a brief summary of
existing facilities in the most popular languages and
provide examples of parallel implementations of some key
algorithms in computer music such as partitioned
convolution and non-negative matrix factorization NMF.
We follow with a brief description of the SEJITS approach
to providing support between the productivity layer
languages used by musicians and related domain experts
and efficient parallel implementations. We also consider
the importance of I/O in computer architectures for music
and audio application. We lament the fact that current GPU
architectures as delivered in desk and laptop processors are
not properly harnessed for low-latency real-time audio
applications.

1. INTRODUCTION

Concerns with energy consumption and heat dissipation
have put the squeeze on processor clock rates and the
move to multi- and many-core computer systems appears
to be the only viable way to improve computing
performance. Multi-core CPUs and many-core GPUs are
now widely available in consumer desk and lap-top
systems, yet music applications, as with nearly the entire
landscape of applications, have yet to provide much in the
way of efficiency via parallelism.
 The most widely used software environments in
the interactive computer music community,
Max/MSP/Jitter, PD, SuperCollider, and CHUCK are
fundamentally sequential programming paradigms. These
environments have exploited multi-core systems by
running copies of the program in separate threads. The
operating system in turn then schedules the threads on the
different cores.
 With the client-server architecture of the
SuperCollider one core is typically identified as the client
and the remaining cores are servers thus providing a

rudimentary mechanism for coordination.
 In the PD environment Miller Puckette (Puckette
2009) has provided a PD~ abstraction which allows one to
embed a number of PD patches, each running on separate
threads, into a master patch that handles audio I/O.
 Max/MSP provides some facilities for parallelism
within its poly~ abstraction mechanism. The poly~ object
allows one to encapsulate a single copy of a patcher inside
of its object box and it automatically generates copies that
can be assigned to a user specified number of threads
which in turn are allocated to different cores by the
operating system. This mechanism has the flavor of data
parallelism and indeed the traditional musical abstractions
of voices, tracks, lines, and channels can make effective
use of it.
 We also hasten to mention Yann Orlarey’s efforts
to automatically parallelize FAUST (2009).
 We now consider two example parallel
implementations, one with real-time constraints and
another that uses a GPU.

2. PARALLEL PARTITIONED CONVOLUTION

2.1. Background

Partitioned convolution is an efficient method of
performing low-latency convolution with a long FIR filter.
A typically use is in convolution-based reverb where the
impulse response represents the reverberations of a large
hall, small room, or other interesting environment. More
creative uses exists as well, such as applying a drum sound
as the impulse response to create rich, percussive sounds
out of recordings of mundane tapping (such as on a table
or chair).
 An algorithmic approach to partitioned convolution
was introduced by Gardner in (Gardner 1995) with a set
partitioning of exponentially increasing block sizes. While
this method is much more efficient than direct convolution,
it misses out on the benefits of reusing the FFTs taken for
each block size. Garcia (2002) demonstrates the use of a
frequency delay line (FDL) for each block size, which
encourages FFT reuse among blocks of the same size. He
also develops an algorithm to arrive at a theoretically
optimal partitioning given a desired latency and impulse
response length. Adriaensen (2006) in his jconv has used

non-uniform block sizes for low latency convolution
reverb applications.

2.2. Our Approach

The implementation of partitioned convolution that we are
developing puts more emphasis on real-time guarantees
and efficiency along with utilizing the multiple cores of
parallel processors. Figure 1 shows an example
partitioning with 3 FDLs. The first FDL contains blocks
equal to the desired latency. The bottom graph shows how
each FDL is scheduled in a separate thread and allowed to
compute for the amount of time associated with its block
size. This gives a total latency of 2N/fs, where fs is the
sample rate, since the input buffer of the first FDL must be
filled with N samples then we compute for time N/fs.

Figure 1. Top - An example of slicing an impulse response up
into multiple FDLs. Bottom - The thread for each FDL is
allowed to compute for as long as it takes to fill its next buffer.

The real-time threads of each FDL can run in
parallel on a distinct processor core, until synchronization
and buffering is required at each horizontal boundary in
the scheduling diagram. In addition to the parallelism
afforded by FDL threading, many-core system can exploit
data-parallelism to compute individual FFTs and complex
vector multiplies on multiple cores.
 Our approach to coming up with a "best"
partitioning does not focus on reducing the total number of
operations or even reducing overall compute time. This is
because we focus on making real-time (as opposed to
throughput) guarantees for our implementation. Therefore,
we measure a worst-case execution time (WCET) for each
size of FDL by polluting the cache or measuring while
other processes are running. Only then can we reason
about what partitioning scheme would behave best in real-
time for a given latency, impulse response length, and
machine.
 We have developed an Audio Unit, a Max/MSP
external, and a portable Portaudio implementation. We
expect this work to enable us to apply long impulse
responses to many (100+) channels in real-time.

3. ACCELERATING NON-NEGATIVE MATRIX
FACTORIZATION

3.1. The Algorithm

Here we describe our efforts to speed up non-negative
matrix factorization (NMF), an unsupervised learning
technique that has been used in audio source separation
and parts-based analysis (Lee et al 1999, Virtanen 2007).
NMF can be used for audio source separation by
decomposing a spectrogram matrix into two matrices
which contain source-wise spectral contributions and time-
varying gains.
 NMF can be phrased as an optimization problem in
which we attempt to find two matrices, W and H, with
non-negative values whose product approximates the input
matrix, X, with minimal error, i.e.

€

X ≈WH .
 We use a matrix divergence cost function to
calculate the error and minimize this cost function with
respect to W and H using multiplicative updates (eq. 1),
which are introduced in (Lee et al 1999).

€

H← H.*
WT X

WH
WT 1

€

W← W.*

X
WH

HT

1HT
 (1)

In the above, division is carried out element-wise, ".*'' is
element-wise multiplication, and 1 represents a matrix of
ones and is used to compute row and column sums.
 The details of our approach to drum track extraction
using the above updates are covered in (Battenberg 2008).
Although these updates are simple to implement and
efficient compared to more complicated optimization
strategies, they can still take a very long time to converge
and completely dominate the computation time of a
source-separation task. Therefore, NMF is an important
computational procedure to optimize. We have
implemented NMF using CUDA to target highly parallel
graphic processors and OpenMP to target multi-core
CPUs.

3.2. Implementations

3.2.1. CUDA

CUDA is the API used to program Nvidia GPUs for
general-purpose computations. The hardware on a CUDA-
compatible GPU can greatly accelerate data-parallel
computations. For example, for a single-precision matrix-
matrix multiply, the current CUDA BLAS (CUBLAS) can
achieve up to 375 Gflops/s on the GTX 280 GPU, while
the Intel MKL BLAS only achieves 38 Gflops/s on a
Core2 Duo 2.67GHz CPU (Volkov et al 2008).
 In our CUDA implementation of NMF, we use the
highly tuned CUBLAS for matrix multiplication (which
makes up the bulk of the computation) and an optimized
routine to compute array sums.

3.2.2. OpenMP

OpenMP is an API that simplifies the process of
parallelizing C code for multi-core CPUs. We use
OpenMP pragmas to parallelize for-loops and the multi-
threaded Intel MKL matrix multiply routines in our C with
OpenMP implementation.

The details of both implementations are covered in
(Battenberg 2009).

3.3. Performance Results

The chart in Figure 2 shows the execution time (smaller is
better) for various implementations of NMF on different
architectures. The CUDA version runs over 30 times faster
on a GTX 280 GPU than the Matlab version runs on a
Core 2 Duo T9300. The OpenMP version runs over 7
times faster on a dual-socket Core i7 920 than the Matlab
version.

Figure 2. Running time comparison for 200 iterations of 30-
source NMF run on 20 seconds of audio data.

Although the CUDA version performs much better,
it is important to point out that writing the CUDA
implementation took almost 10 times as long as writing the
OpenMP version. Therefore, for most programs, CUDA
should be reserved for only the most compute-intensive
routines.

4. BRIDGING THE GAP

As we just noted, efficient parallel code is not easy to
develop. Our music and audio languages should provide
mechanisms that help exploit parallelization without the
encumbering details of the efficiency layer
implementation. In the Par Lab at UC Berkeley there is
promising research on an idea know as Selective,
Embedded Just-In Time Specialization (SEJITS)
(Catanzaro et al 2009). Let’s use the example above that
implemented, in CUDA, non-negative matrix factorization,
a key component in music information retrieval (MIR)
systems.

 A music researcher would write MIR software in a
productive and expressive scripting language such as
PYTHON or RUBY and express operations on time-
frequency representations like the multiplication and
division in the example above in the scripting language.
This scripted version of the software would remain as the
portable source code. When the script is run on a particular
architecture SEJITS determines if efficient
implementations of selected code segments are available
and if so generates the appropriate code in an efficiency
layer language like C, Cilk, C++, OpenCL, or CUDA as in
this example.

5. BALANCED ARCHITECTURE COMPUTING

Balancing Load/Store rates and arithmetic unit rates is key
to achieving high performance in modern computer
architectures. This problem is commonly framed in terms
of load/store throughput to memory. For current music and
media processing applications especially where low-
latency is important it is necessary to also consider
balancing data flows from the I/O system. The industry is
currently focused on optimizing systems with video I/O,
usually with emphasis on output and typically on a small
number of outputs corresponding to monitor ports. The
resulting GPU architectures aren't very effective in audio
applications with a high input and output stream count
typical of wave-field, beam-forming microphone and
speaker array applications. They also don't address the
trend towards higher gesture information rates from high
resolution multitouch surfaces, and time-of-flight 3D
cameras.

We recognized this need for balanced architectures
from the beginning of CNMAT in 1989 and developed our
early real-time performance software on the Reson8
machine (Barrière et al 1989) which was optimized for
musical applications. The Reson8 employed 7 24-bit
processors connected via dual-port RAM to a master
processor. This processor could read I/O from any
processor in a single instruction cycle time and broadcast
to all with a single cycle. Each processor had its own SSI
port capable for 8-channels of digital I/O.

When the clock rates of DSP processors started to
lag mainstream general purpose processors we moved to
develop on SGI Indigo and Indy which had high
performance multichannel audio I/O and a unique bus that
synchronized all video and audio peripherals to the system
clock. The REACT hard real-time scheduling of SGI IRIX
provided the means to achieve the low latency high
performance potential of the hardware. We explored
multiprocessor musical applications using the two
processor SGI Octane which also had high performance
I/O to support digital video, computer graphics and audio
simultaneously.

As SGI's CPU performance fell behind mainstream
processors we moved to mainstream PowerPC and Intel

desktop and laptop machines. Noticing performance
bottlenecks and resource contention on the buses proposed
with these machines we developed our own multichannel
audio I/O hardware using FPGA's and Ethernet
connectivity. These were extended to include gesture
acquisition and clock synchronization and we have
demonstrated scaling comfortably to hundreds of channels.

The recent interest in multicore machines presents
new challenges because I/O is now bottlenecked at the
boundary between the CPU core and off chip I/O sources
and sinks. We would like to see more per CPU support for
timely I/O and more pins allocated to I/O and are building
demonstration application to explore the associated design
tradeoffs. We will explore the idea that direct I/O into each
core may be a useful way of avoiding cache interaction and
contentions problems as we observed in our work on the
Reson8.

6. CONCLUSIONS

On the horizon is a diversity of many-core architectures
with varying amounts of homogeneity. The SEJITS
approach has promise for providing portability across the
rapidly evolving and likely rough terrain of new computer
architectures, compilers, and code generation strategies.
For SEJITS to do its job the scripting language must have
mechanisms for introspection and meta-programming. We
need to examine our languages in this regard.

The example MIR application of SEJITS we
provide is a non-real-time one and in no way can we stop
there. We need to bring temporal criteria to efficiency
layer programming and pass performance behavior stats to
a SEJITS like environments to find optimal
implementations.

In the work on parallel partitioned convolution we
provide the opportunity to auto-tune not only raw
performance but also temporal performance and timely
behavior. The accelerated non-negative matrix
factorization demonstrated the power of the current
generation of GPUs to provide significant speedups.
These results along with many other non-video
applications of GPUs call out for better I/O facilities on
GPU architectures that would better support low-latency
performance. We need GPU CPU combinations to be
more flexible with I/O. The reality is that we will need
more I/O pins to our tiles of CPUs.

7. ACKNOWLEDGEMENTS

Supported by a grant from Intel and Microsoft (Award
#20080469), and the UC Discovery Program (Award
#DIG07-10227). Special thanks to Andy Schmeder,
Rimas Avizienis, and John MacCallum for discussions.

8. REFERENCES

F. Adriaensen (2006) “Design of a convolution engine for
reverb” International Linux Audio Conference,
Karlsruhe 2006.

E. Battenberg and D. Wessel, (2009) “Accelerating non-
negative matrix factorization for audio source
separation on multi-core and many-core
architectures” International Society for Music
Information Retrieval Conference, 2009.

E. Battenberg, (2008) “Improvements to percussive
component extraction using non-negative matrix
factorization and support vector machines,” Masters
Thesis, University of California, Berkeley, Berkeley,
CA, 12 2008.

J. B. Barrière, P. F. Baisnee, A. Freed, and M. D. Baudot.
(1989) “A digital signal multiprocessor and its
musical application” Proceedings of the 15th
International Computer Music Conference, ICMA,
pp 17-20, 1989.

Bryan Catanzaro, Shoaib Kamil, Yunsup Lee, Krste
Asanovic, James Demmel, Kurt Keutzer, John Shalf
(LBL), Kathy Yelick, Armando Fox. (2009) SEJITS:
Getting Productivity And Performance With
Selective, Just-In-Time Specialization. Proc. 1st
Workshop on Programming Models for Emerging
Architectures (PMEA’09), Raleigh, NC, Sept. 2009.

G. Garcia, (2002) "Optimal filter partition for efficient
convolution with short input/output delay,"
Proceedings of the Audio Engineering Society
Convention, 2002

W. Gardner, (1995) "Efficient convolution without input-
output delay," Journal of the Audio Engineering
Society, vol. 43 (3) pp. 127-136, 1995.

D. Lee and H. Seung, (1999) “Learning the parts of
objects by non-negative matrix factorization,” Nature,
vol. 401, no. 6755, pp. 788–791, 1999.

D. Lee and H. Seung, (2001) “Algorithms for non-negative
matrix factorization,” Advances in neural information
processing systems, pp. 556–562, 2001.

Y. Orlarey (2009) “Adding automatic parallelization to
Faust” International Linux Audio Conference, 2009.

M. Puckette, (2009) “Multiprocessing in PD” Proceedings
of the 3rd International Pure Data Convention Sao
Paulo Brazil 2009.

T. Virtanen, (2007) “Monaural sound source separation by
non-negative matrix factorization with temporal
continuity and sparseness criteria,” IEEE
Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 3, pp. 1066–1074, 2007.

V. Volkov and J. Demmel, (2008) “Benchmarking GPUs
to tune dense linear algebra,” in Proceedings of the
2008 ACM/IEEE conference on Supercomputing.
IEEE Press, 2008, pp. 1–11

