An AggreGATE Network Abstraction for Mobile Devices

Ganesh Ananthanarayanan, David Zats

Motivation

- Mobile devices increasingly have multiple interfaces (Cellular, Wi-Fi, Bluetooth)
- Proliferation of mobile devices means likely often in vicinity of each other
 - Example Scenarios:
 - Use my 3G, Wi-Fi and bluetooth interfaces in tandem to stream music
 - Collaborate with devices in close proximity to upload media (videos, photos etc.)

Problem Statement

Design a system that seamlessly and simultaneously leverages the multiple connectivity options

Measurements

- Connectivity: location, time and device
 - Cell: 3G [255, 497] kbps, Edge [36, 182] kbps
 - Wi-Fi: [625, 1700] kbps
 - Bluetooth: [335, 450] kbps
- Often times, there is significant advantage in combining them
- Wi-Fi coverage is spotty and a seamless handoff improves user experience

Proxy-based Design

- Mobile device registers connections with an AggreGATE proxy
- Applications access an abstract AggreGATE network interface
 - open(), get(), put() syntax
 - Application Data Units (ADU)
- AggreGATE splits/splices the flow between server and mobile device – agnostic to local interfaces or collaborators
- Advantages:
 - Avidos to TCP/IP stack
 - Avidos to server

Scheduling

- Dynamically allocate ADU batches
 - Continuously measure throughput
 - Allocate ADUs proportionally
- Handling stragglers
 - Estimated completion based on measured throughputs
 - Progress Report for slow connections
 - Reallocate remaining ADUs to best available connection
- Amenable to policy decisions at the proxy/mobile device (Power, Cost ($$))

Handoffs

- Provide uninterrupted service in the face of connections becoming unavailable
- Mobility-induced loss of signal
 - Collaborator becomes unavailable
 - Mobility detection to open backup connections
- Euclidean Distance of signal fingerprints
- Natural extension to scheduling
- Same as handling stragglers, but measured throughput is zero

Implementation

- Single mobile device:
 - Uploads to server using proxy via Bluetooth and cellular interface (Edge/3G)
 - 2X speed-up, automatic handoff
- Collaborating devices
 - Mobile devices (with their individual 3G/Edge connection) collaboratively upload a file
 - Collaborate using ad hoc Wi-Fi
 - Near-linear speed-up

Future Work

- Mobility detection using accelerometer
- Incorporate policies in to scheduling
- Extensive evaluation