Creating a Scalable HMM based Inference Engine for Large Vocabulary Continuous Speech Recognition

Ekaterina Gonina and Henry Cook

PROBLEM STATEMENT

Our goal is to create algorithms for speech recognition inference that scale with increasing vector unit widths, increasing number of cores per die, and increasing complexity of the memory hierarchy. To do this we optimize SIMD efficiency, synchronization costs, and data locality and placement. We evaluate which algorithmic techniques are applicable across a diverse set of architectures including multicore processors, manycore GPUs, and virtual local stores.

INFERENC ENGINE CHARACTERISTICS

- The inference process takes the form of a parallel graph traversal through an irregular network of states and arcs.
- Traversal is guided by a sequence of input audio vectors.
- The algorithm has multiple phases, each of which express fine-grained parallelism. As the algorithm runs, it computes on a continuously changing data set corresponding to the currently active states in the underlying Hidden Markov Model.
- Fine-grained parallelism and changing work set size are the primary features that our algorithms must address to achieve scalability.

ALGORITHM DESIGN SPACE EXPLORATION

- Efficient graph traversal
 - Reduce task management overhead
 - Enable speedup with more cores
- Efficient transition evaluation
 - Enable speedup with SIMD width
- Efficient data placement
 - Locality, alignment, coalescence

IMPLEMENTATION DETAILS

- Software management is most effective for phases with streaming memory accesses, but is less effective for phases with fine-grained random access patterns

HARDWARE DESIGN SPACE EXPLORATION

Multicore:
- Intel Nehalem 920
- NVIDIA G280

Manycore:
- State-based Propagation RTF: 0.022, 1.4x
- State-based Aggregation RTF: 2.335, 1.2x

RESULTS

- Communication vs. Computation
- Memory Hierarchy
 - Software management is most effective for phases with streaming memory accesses, but is less effective for phases with fine-grained random access patterns

FUTURE WORK

- Evaluate scaling on future platforms with wider SIMD or more cores
- Optimizations of private storage management for task queue model

COLLABORATORS:
- JIKE CHONG, KISUN YOU, YOUNGMIN YI, CHRISTOPHER HUGHES, WONYONG SUNG, KURT KEUTZER