
 Block-Structured Adaptive Mesh Refinement Algorithms and
Software

Phillip Colella
Lawrence Berkeley National Laboratory



Local Refinement for Partial Differential Equations
Variety of problems that exhibit multiscale behavior, in the form of
localized large gradients separated by large regions where the
solution is smooth.

• Shocks and interfaces.
• Self-gravitating flows in astrophysics.
• Complex engineering geometries.
• Combustion.
• Magnetohydrodynamics: space weather, magnetic fusion.

In adaptive methods, one adjusts the computational effort locally
to maintain a uniform level of accuracy throughout the problem
domain.



Finite difference equations
Want to solve numerically

Using Taylor expansions, we know that

So we define a discrete solution

And a discrete operator

And solve the finite-dimensional linear system

How do we know that this works ?



Lax Theorem
Consistency:

Stability:

The error is the difference between the computed solution and the exact solution:

It satisfies the relationship

Stability + consistency implies convergence:

is bounded independent of 



Stability

Stability is hard:                must be bounded for any input     even if it
doesn’t come from evaluating a smooth function at grid points.

Typically, we can prove stability for only the simplest (linear) cases. In this
case,      is a symmetric positive definite matrix and can be diagonalized
using a discrete Fourier transform. Solutions to the homogeneous problem
satisfy a maximum principle.

For hard problems, stability is investigated by a combination of
techniques: rigorous analysis of simplified model problems, asymptotic
analysis (physical reasoning), and careful numerical experimentation.

For problems derived from classical PDE, this methodology works
because stability can be split into two pieces: long-wavelength problems
(which are smooth, and for which therefore the well-posedness of the
original operator is relevant) and short-wavelength problems (which are
local in space).



Modified Equation Analysis
Finite difference solutions to partial differential equations behave
like solutions to the original equations with a modified right hand
side.
For linear steady-state problems LU = f :

For nonlinear, time-dependent problems

In both cases, the truncation error τ = τ(U)=(Δx)pM(U), where M is a
(p + q)-order differential operator.



Conservation Form
Our spatial discretizations are based on conservative finite
difference approximations.

Such methods satisfy a discrete form of the divergence theorem:

This class of discretizations is essential for discontinuities, and
desirable for a large class of engineering applications.



Block-Structured Local Refinement (Berger and Oliger, 1984)

Refined regions are organized into rectangular patches.
Refinement performed in time as well as in space.



AMR Design Issues

Accuracy: effect of truncation on solution error.

• How does one estimate the error?
• Failure of error cancellation can lead to large truncation errors at

boundaries between refinement levels.

• Well-posedness of initial-boundary value problem.
• Refinement in time.
• Conservation and free-stream preservation

Stability: boundary conditions at refinement boundaries.

The principal difficulty in designing block-structured AMR
methods is determining the relationship between the numerical
algorithms and the well posedness of the free boundary-value
problem for the underlying PDEs.



AMR for Hyperbolic Conservation Laws (Berger and Colella,
1989)
We assume that the underlying uniform-grid method is an explicit
conservative difference method.

On a two-level AMR grid, we have              and the update is
performed in the following steps.

• Update solution on entire coarse grid:
• Update solution on entire fine grid: 

(nrefine times).
• Synchronize coarse and fine grid solutions.



Synchronization of Multilevel Solution

• Average coarse-grid solution onto fine grid.
• Correct coarse cells adjacent to fine grid to maintain

conservation.

Typically, need a generalization of GKS theory for free boundary
problem to guarantee stability (Berger, 1985).  Stability not a
problem for upwind methods.



Discretizing Elliptic PDE’s
Naïve approach:

• Solve Δψ������c=gc on coarse grid.
• Solve Δψf=gf on fine grid, using coarse grid values to interpolate

boundary conditions.
Such an algorithm yields coarse-grid solution accuracy on the fine
grid (Bai and Brandt, Thompson and Ferziger).

ψc¼ψexact+Δ��-1τc.  Using ψc to interpolate boundary conditions for
fine calculation introduces coarse-grid error on fine grid.



Solution: compute ψcomp, the solution of the properly-posed problem
on the composite grid.

The Neumann matching conditions are flux matching conditions,
and are discretized by computing a single-valued flux at the
boundary.  On the fine grid, one is still solving the same BVP as in
the naïve case, but with coarse grid values that have been modified
to account for the Neumann matching conditions.
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Truncation Errors at Coarse-Fine Interfaces



Convergence Results for Poisson’s equation (τ,ε~ hP )



Time Discretization for Parabolic Problems
Example: time-dependent Landau-Ginzburg equation

The marginal stability of the Crank-Nicolson method shown on the left
suggests trying other more robust implicit Runge-Kutta methods that
are second-order accurate and L0 stable (Twizell, Gumel, and Arigu,
1996).



AMR Calculation of Inviscid Shear Layer (Martin and Colella,
2000)



AMR Calculation of Brown-Roshko Shear Layer (Almgren, et. al.,
1998)



Comparison to Experimental Measurements



Magnetohydrodynamics (Samtaney et. al., 2003)
Fluid representation: AMR for magnetohydrodynamics, based on
semi-implicit methods.

• Explicit upwind discretizations for hyperbolic terms.
• Implicit discretizations for parabolic operators.
• Projection to enforce   constraint.



AMR Stability and Accuracy Issues for Other Applications

• Low-Mach number combustion.  Interaction of pressure constraint,
inhomogenous divergence constraint with refinement in time (Pember,
et. al., 1998).

•        radiation, radiative heat transfer.  Collection of steady-state, linear
hyperbolic equations coupled by source terms.  AMR / multigrid iteration
scheme needs to respect upwinding.  Radiation-matter coupling is stiff in
optically thin regions, requires more implicit treatment of coarse-fine
conservation (Jessee et. al., 1998; Howell et. al., 1999).

• Charged-fluid models of plasmas, semiconductor devices.  Semi-implicit
formulation in terms of classical PDE’s leads to efficient and stable
treatment of stiff dielectric relaxation time scale.  Positivity-preservation
for nonlinear elliptic systems (Colella, Dorr, Wake, 1999; Bettencourt,
1998).

• AMR for particle methods (PIC, PPPM).  Relationship between the
particle distribution and the refinement criterion (Almgren, Buttke, and
Colella, 1994).

• Mapped Grids.  Coarse-fine stability for steady state problems.  C2 grid
mappings lead to control volumes that depend on refinement level
(Berger and Jameson, 1985; Bell, Colella, Tangenstein, Welcome, 1991;
Dudek and Colella, 1999).



Chombo: a Software Framework for Block-Structured AMR
Requirement: to support a wide variety of applications that use
block-structured AMR using a common software framework.
• Mixed-language model: C++ for higher level data structures,

Fortran for regular single-grid calculations.
• Reusable components: Component design based on mapping of

mathematical abstractions to classes.
• Build on public domain standards: MPI, HDF5, VTK.

Previous work: BoxLib (LBNL/CCSE), KeLP (Baden, et. al.,
UCSD), FIDIL (Hilfinger and Colella).



Layered Design

• Layer 1.  Data and operations on unions of boxes - set calculus,
rectangular array library (with interface to Fortran), data on unions
of rectangles, with SPMD parallelism implemented by distributing
boxes over processors.

• Layer 2.  Tools for managing interactions between different levels
of refinement in an AMR calculation - interpolation, averaging
operators, coarse-fine boundary conditions.

• Layer 3.  Solver libraries - AMR-multigrid solvers, Berger-Oliger
time-stepping.

• Layer 4.  Complete parallel applications.

• Utility layer.  Support, interoperability libraries - API for HDF5
I/O, visualization package implemented on top of VTK, C API’s.



Examples of Layer 1 Classes (BoxTools)

• IntVect i 2 Zd.  Can translate i1 ± i2, coarsen  i / s  , refine  i £ s.

• Box B ½ Zd is a rectangle: B = [ilow, ihigh].  B can be translated,
coarsened, refined.  Supports different centerings (node-centered
vs. cell-centered) in each coordinate direction.

• IntVectSet I½Zd is an arbitrary subset of Zd.  I can be shifted,
coarsened, refined.  One can take unions and intersections, with
other IntVectSets and with Boxes, and iterate over an
IntVectSet.

• FArrayBox A(Box B, int nComps): multidimensional arrays
of doubles or floats constructed with B specifying the range of
indices in space, nComp the number of components.
Real* FArrayBox::dataPtr returns the pointer to the
contiguous block of data that can be passed to Fortran.



Example: explicit heat equation solver on a single grid







Distributed Data on Unions of Rectangles
Provides a general mechanism for distributing data defined on unions of
rectangles onto processors, and communication between processors.

• Metadata of which all processors have a copy: BoxLayout is a collection of
Boxes and processor assignments:
DisjointBoxLayout:public BoxLayout is a BoxLayout for which the
Boxes must be disjoint.

• template <class T> LevelData<T> and other container classes hold
data distributed over multiple processors.  For each k=1 ... nGrids , an
“array” of type T corresponding to the box Bk is located on processor pk.
Straightforward API’s for copying, exchanging ghost cell data, iterating over
the arrays on your processor in a SPMD manner.



Example: explicit heat equation solver, parallel case

• LevelData<T>::exchange(): obtains ghost cell data from valid
regions on other patches

• DataIterator: iterates over only the catches that are owned on
the current processor.

Want to apply the same algorithm as before, except that the data
for the domain is decomposed into pieces and distributed to
processors.







Software Reuse by Templating Dataholders
Classes can be parameterized by types, using the class template language
feature in C++.
BaseFAB<T> is a multidimensional array which can be defined for any type T.
FArrayBox: public BaseFAB<Real>
In LevelData<T>, T can be any type that “looks like” a multidimensional array.
Examples include:

• Ordinary multidimensional arrays, e.g. LevelData<FArrayBox>.
• A composite array type for supporting embedded boundary

computations:

• Binsorted lists of particles, e.g. BaseFAB<List<ParticleType>>



Layer 2: Coarse-Fine Interactions (AMRTools).
The operations that couple different levels of refinement are among the
most difficult to implement AMR.
• Interpolating between levels (FineInterp).
• Interpolation of boundary conditions (PWLFillpatch,

QuadCFInterp).
• Averaging down onto coarser grids (CoarseAverage).
• Managing conservation at coarse-fine boundaries

(LevelFluxRegister).

These operations typically involve interprocessor communication and
irregular computation.



Example: class LevelFluxRegister

The coarse and fine fluxes are computed at different times in the
program, and on different processors.  We rewrite the processes in
the following step.



A LevelFluxRegister object encapsulates these operations:

• LevelFluxRegister::setToZero()
• LevelFluxRegister::incrementCoarse: given a flux in a

direction for one of the patches at the coarse level, increment
the flux register for that direction.

• LevelFluxRegister::incrementFine: given a flux in a
direction for one of the patches at the fine level, increment the
flux register with the average of that flux onto the coarser level
for that direction.

• LevelFluxRegister::reflux: given the data for the entire
coarse level, increment the solution with the flux register data for
all of the coordinate directions.



Layer 3: Reusing Control Structures Via Inheritance
(AMRTimeDependent, AMRElliptic).
AMR has multilevel control structures that are largely independent
of the details of the operators and the data.

• Berger-Oliger refinement in time
• Multigrid iteration on a union of rectangles.
• Multigrid iteration on an AMR hierarchy.

To separate the control structure from the details of the operations
that are being controlled, we use C++ inheritance in the form of
interface classes.



Example: AMR / AMRLevel interface for Berger-Oliger timestepping

• virtual void AMRLevel::advance()=0 advances the
data at a level by one time step.

• virtual void AMRLevel::postTimeStep()=0 performs
whatever synchronization operations required after all the finer
levels have been updated.

We implement this control structure using a pair of classes.
class AMR: manages the Berger-Oliger time-stepping process.
class AMRLevel: collection of virtual functions called by an AMR
object that perform the operations on the data at a level, e.g.:



AMR Utility Layer

• API for HDF5 I/O.
• Interoperability tools.  We are developing a framework-neutral

representation for pointers to AMR data, using opaque handles.
This will allow us to wrap Chombo classes with a C interface
and call them from other AMR applications.

• Chombo Fortran - a macro package for writing dimension-
independent Fortran and managing the Fortran / C interface.

• Parmparse class from BoxLib for handling input files.
• Visualization and analysis tools (ChomboVis).



I/O Using HDF5
NSCA’s HDF5 mimics the Unix file system
• Disk file $ “/”
• Group $ subdirectory.
• Attribute, dataset $ files.  Attribute: small metadata that multiple

processes in a SPMD program may write out redundantly.
Dataset: large data, each processor writes only the data it owns.

Chombo API for HDF5
• Parallel neutral: can change processor layout when re-inputting

output data.
• Dataset creation is expensive - one does not want to create one

per rectangular grid.  Instead, create one dataset for each
BoxLayoutData or LevelData.  Each grid’s data is written
into offsets from the origin of that dataset.



Load Balancing
For parallel performance, need to obtain approximately the same
work load on each processor.

• Unequal-sized grids: knapsack algorithm provides good
efficiencies provided the number of grids / processor ¸ 3
(Crutchfield, 1993).  Disadvantage: does not preserve locality.

• Equal-sized grids can provide perfect load balancing if algorithm
is reasonably homogenous.  Disadvantage: many small patches
can lead to large amounts of redundant work.

Both methods obtain good scaling into 1000’s of processors for
hyperbolic problems.



Spiral Design Approach to Software Development
Scientific software development is inherently high-risk: multiple
experimental platforms, algorithmic uncertainties, performance
requirements at the highest level.  The spiral Design Approach allows
one to manage that risk, by allowing multiple passes at the software
and providing a high degree of schedule visibility.
Software components are developed in phases.
• Design and implement a basic framework for a given algorithm

domain (EB, particles, etc.), implementing the tools required to
develop a given class of applications.

• Implement one or more prototype applications as benchmarks.
• Use the benchmark codes as a basis for measuring performance

and evaluating design space flexibility and robustness.  Modify the
framework as appropriate.

• The framework and applications are released, with user
documentation, regression testing, and configuration for multiple
platforms.



Software Engineering Plan

• All software is open source:
http://seesar.lbl.gov/anag/software.html.

• Documentation: algorithm, software design documents;
Doc++/Doxygen manual generation; users’ guides.

• Implementation discipline: CVS source code control, coding
standards, TTPRO bug tracking system.

• Portability and robustness: flexible make-based system,
regression testing.

• Interoperability: C interfaces, opaque handles, permit
interoperability across a variety of languages (C++, Fortran 77,
Python, Fortran 90).  Adaptors for large data items a serious
issue, must be custom-designed for each application.


