CS 170: Problem Set 5
Due: September 30, 2011, 4:00 p.m.

Instructions: Turn this in to the class homework boxes in 283 Soda by 4:00 p.m. on Friday, September 30, 2011. Please begin your answer to each question on a new sheet of paper and make sure each sheet is labeled with your name, SID, section number, GSI name, the assignment number, the question number, and “CS 170 – Fall 2011.”

Because each problem will be graded by a different reader, please turn in each question in a different box in 283 Soda. Question i goes in the box labeled “CS 170 — i.”

Please read the class webpage for rules regarding collaboration (encouraged!) and cheating (forbidden!) on homework.

DPV = Dasgupta, Papadimitriou, and Vazirani.

1. DPV 4.1
2. DPV 4.4
3. DPV 4.5
4. DPV 4.13
5. DPV 4.19
6. A directed graph $G = (V, E)$ is called semiconnected if for every pair of distinct vertices u and v there is either a path from u to v or from v to u, or both (u and v may lie on a cycle). Show that G is semiconnected if and only if the DAG formed by G’s strongly connected components has a unique topologically sorted order, i.e. there is a unique way to order the DAG vertices v_1, v_2, \ldots, v_n such that any edge (v_i, v_j) satisfies $i < j$. Hint: Let \tilde{G} denote the DAG of strongly connected components of G. Show that G is semiconnected if and only if \tilde{G} has the following property: if v_i and v_{i+1} are consecutive vertices in a topological sort of \tilde{G}, then the edge (v_i, v_{i+1}) exists in \tilde{G}.