Communication Lower Bounds and Optimal Algorithms for Programs that Reference Arrays

James Demmel

UC Berkeley Math and EECS Depts.

Joint work with Michael Christ, Nicholas Knight, Thomas Scanlon, Katherine Yelick

Motivation: Why avoid communication?

- Communication = moving data
 - Between levels of memory hierarchy
 - Between processors over network
- Running time of an algorithm is sum of 3 terms:
 - #flops * time_per_flop
 - -#words_moved / bandwidth ... communication
 - -#messages * latency ... communication
- Time_per_flop \ll 1/bandwidth \ll latency
 - $-\operatorname{Gaps}$ growing exponentially
- Avoid communication to save time
- Same story for energy: Avoid communication to save energy

Example: Optimal Sequential Matmul

- Naive code
 - for i=1:n, for j=1:n, for k=1:n, C(i,j)+=A(i,k)*B(k,j)
 - Moves $\Theta(n^3)$ words between cache (size $M < n^2)$ and DRAM
- \bullet "Blocked" code
 - Write A as $n/b \times n/b$ matrix of $b \times b$ blocks A[i, j]
 - Ditto for B, C

$$-\text{ for } i=1:n/b, \text{ for } j=1:n/b, \text{ for } k=1:n/b, \\ C[i,j]+=A[i,k]*B[k,j] \qquad \dots \qquad b \times b \text{ matmul}$$

- Thm [Hong,Kung]: Choosing $b \approx (M/3)^{1/2}$ attains lower bound: #words_moved = $\Omega(n^3/M^{1/2})$
- Where do 1/2's come from?

New Theorem, applied to Matmul

- for i=1:n, for j=1:n, for k=1:n, C(i,j) + = A(i,k) * B(k,j)
- \bullet Record array indices in matrix Δ

$$\Delta = \begin{array}{ccc} i & j & k \\ A \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ C \begin{pmatrix} 1 & 1 & 0 \end{pmatrix} \end{array}$$

- Let $x = [x_i, x_j, x_k]^T$, $\mathbf{1} = \text{vector of 1's}$
- Solve LP: maximize $\mathbf{1}^T x$ such that $\Delta x \leq \mathbf{1}$
- Solution: $x = [1/2, 1/2, 1/2], \mathbf{1}^T x = 3/2 \equiv s_{HBL}$
- Thm: #words_moved = $\Omega(n^3/M^{s_{HBL}-1}) = \Omega(n^3/M^{1/2}).$
- Attain by blocking index i by $\Theta(M^{x_i}) = \Theta(M^{1/2})$, ditto for j, k

New Theorem, applied to Direct n-Body

• for
$$i=1:n$$
, for $j=1:n$, $F(i) + = force(P(i), P(j))$

• Record array indices in matrix Δ

$$\Delta = \begin{array}{cc} i & j \\ F & 1 & 0 \\ P(j) \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

• Let
$$x = [x_i, x_j]^T$$
, $\mathbf{1} =$ vector of 1's

- Solve LP: maximize $\mathbf{1}^T x$ such that $\Delta x \leq \mathbf{1}$
- Solution: $x = [1, 1], \mathbf{1}^T x = 2 \equiv s_{HBL}$
- Thm: #words_moved = $\Omega(n^2/M^{s_{HBL}-1}) = \Omega(n^2/M^1)$.
- Attain by blocking index i by $\Theta(M^{x_i}) = \Theta(M^1)$, ditto for j

New Theorem, applied to Random Code

- for $i1=1:n, \dots$, for i6=1:n, A1(i1, i3, i6) + = func1(A2(i1, i2, i4), A3(i2, i3, i5), A4(i3, i4, i6))A5(i2, i6) + = func2(A6(i1, i4, i5), A3(i3, i4, i6))
- \bullet Record array indices in 6 \times 6 matrix Δ

 $-\,{\rm one}$ column per index $i1,\ldots,i6$

- one row per distinct set of array subscripts A1, ..., A6
- $-\Delta(i,j) = 1$ if array subscript *i* has index *j*, else 0
- Let $x = [x_1, ..., x_6]^T$, **1** = vector of 1's
- Solve LP: maximize $\mathbf{1}^T x$ such that $\Delta x \leq \mathbf{1}$
- Solution: $x = [2/7, 3/7, 1/7, 2/7, 3/7, 4/7], \mathbf{1}^T x = 15/7 \equiv s_{HBL}$
- Thm: #words_moved = $\Omega(n^6/M^{s_{HBL}-1}) = \Omega(n^6/M^{8/7}).$
- Attained by block sizes $M^{2/7}$, $M^{3/7}$, $M^{1/7}$, $M^{2/7}$, $M^{3/7}$, $M^{4/7}$

Summary of Results (1/3)

- Extend communication lower bound proof from linear algebra to any program with
 - Inner loop iterations indexed by $(i_1, ..., i_d)$
 - Arrays in inner loop subscripted by linear functions of indices
 - -Ex: $A(i_1, i_2 i_1, 3i_1 4i_2 + 7i_4, ...), B(pntr(i_5 + 6i_6)), ...$
 - $-\operatorname{Can}$ be dense or sparse, sequential or parallel, ...
- Based on recent generalization of Hölder, Loomis-Whitney, Brascamp-Lieb inequalities by Bennett/Carbery/Christ/Tao
 - Need to count lattice points, not volumes
 - Get linear program with one inequality per subgroup $H \leq \mathbb{Z}^d$
 - Solution of linear program (HBL-LP) is s_{HBL}
 - Thm: #words_moved = $\Omega(\text{#loop_iterations}/M^{s_{HBL}-1})$

Summary of Results (2/3)

- Can we write down the lower bound?
 - One inequality per subgroup $H \leq \mathbb{Z}^d$, but still finitely many!
 - Thm (Bad news): Writing down all inequalities in HBL-LP \iff Hilbert's 10th Problem over \mathbb{Q}
 - Thm (Good news): Another LP has same solution, is decidable (but expensive, so far)
 - Thm (Better news): Easy to write down HBL-LP explicitly in many cases of interest (eg when subscripts are just subsets of indices)
 - Also easy to get upper/lower bounds on solution s_{HBL}

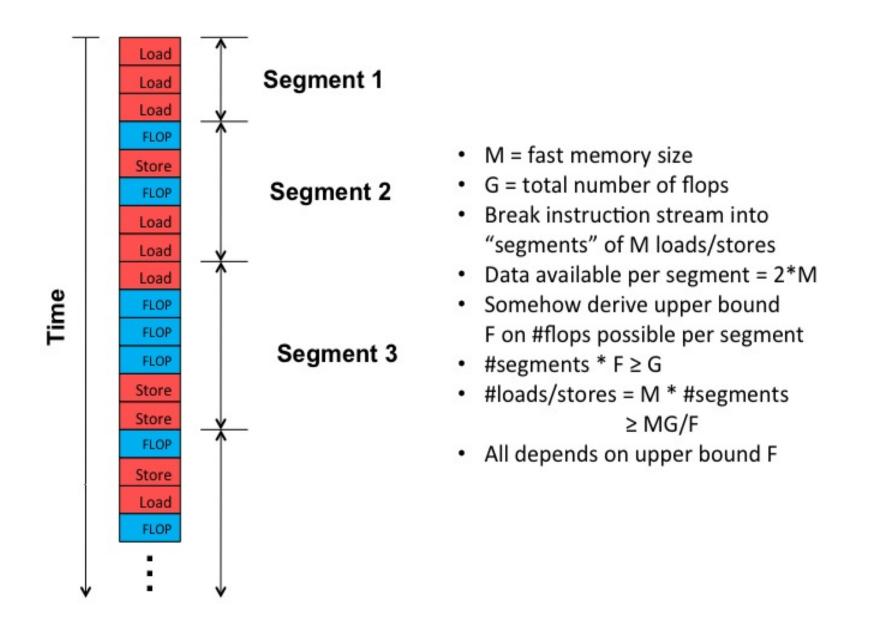
Summary of Results (3/3)

- Can we attain the lower bound?
 - Depends on loop dependencies
 - Best case: none, or reductions (like matmul)
 - Thm: When subscripts are just subsets of indices, the solution x of dual HBL-LP tells us the optimal tile sizes $M^{x_1},...,M^{x_d}$
 - $-\operatorname{Ex:}$ linear algebra, n-body, "random code", database join, \dots
 - Conjecture: always attainable (modulo dependencies)

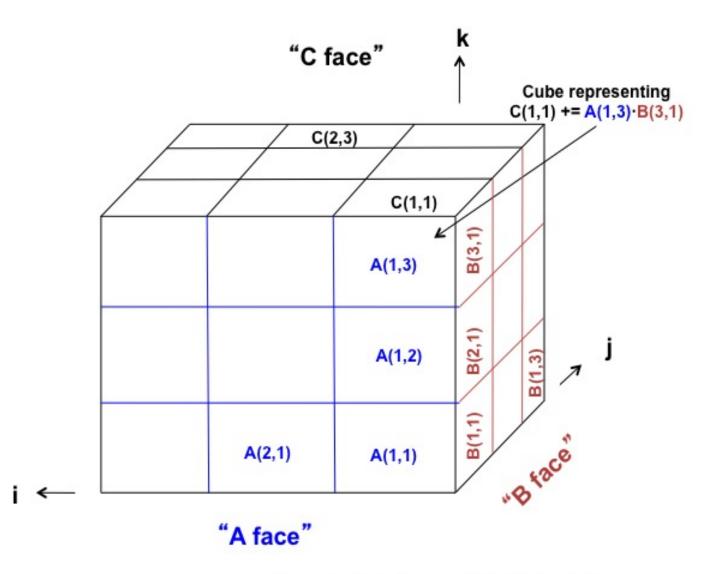
Outline

- 1. Recall lower bound proof for direct linear algebra using Loomis-Whitney
- 2. Hölder-Brascamp-Lieb Linear Program (HBL-LP)
 - Continuous case, then discrete case
- 3. Applying lower bound to more general code
- 4. Decidability of lower bound
 - \bullet Where Hilbert's 10th Problem over $\mathbb Q$ arises, how to avoid it
- 5. Special Case: When subscripts are just subsets of indices
 - Why HBL-LP simpler, why dual tells us optimal algorithm
- 6. Conclusions and Open Problems

Recall Proof for Direct Linear Algebra (3 Nested Loops)

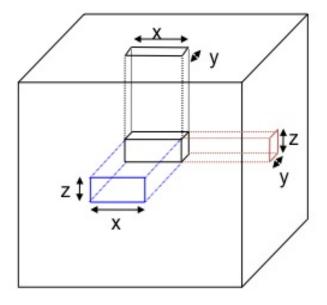


Geometric Model



If we have at most 2M "A squares", 2M "B squares", and 2M "C squares" on faces, how many cubes can we have?

Loomis-Whitney

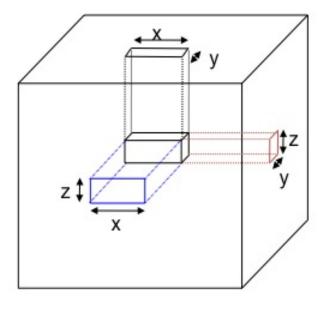


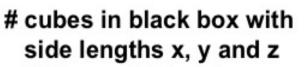
- # cubes in black box with side lengths x, y and z
- = Volume of black box
- = x · y · z

$$= (xz \cdot zy \cdot yx)^{1/2}$$

= (**#AS** · **#BS** · **#CS**)^{1/2}

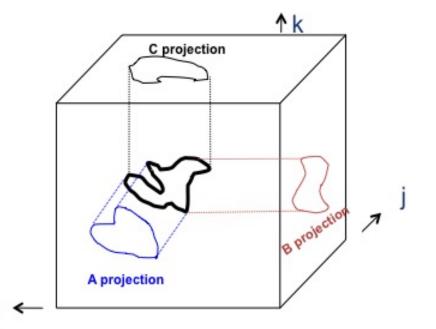
Loomis-Whitney





- = Volume of black box
- = x·y·z

$$= (\mathbf{x}\mathbf{z} \cdot \mathbf{z}\mathbf{y} \cdot \mathbf{y}\mathbf{x})^{1/2}$$



(i,k) is in A projection if (i,j,k) in 3D set (j,k) is in B projection if (i,j,k) in 3D set (i,j) is in C projection if (i,j,k) in 3D set

```
Thm (Loomis & Whitney, 1949)

# cubes in 3D set = Volume of 3D set

≤ (area(A projection) ·

area(B projection) ·

area(C projection)) <sup>1/2</sup>
```

Summary of Lower Bound Proof for 3 Nested Loops

- M =fast memory size, G =total number of flops
- Break instruction stream into segments of M loads/stores
- \implies 2M words of data available during segment
- Use Loomis Whitney to bound F = #multiplies/segment by $F \leq (\#A_entries)^{1/2} \cdot (\#B_entries)^{1/2} \cdot (\#C_entries)^{1/2}$ $\leq (2M)^{3/2} = O(M^{3/2})$
- $F \cdot \# \text{segments} \ge G \implies \# \text{segments} \ge G/F$
- #loads/stores = $M \cdot$ #segments $\geq MG/F = \Omega(G/M^{1/2})$
- Result independent of dependencies (so works for LU, etc)
- Result independent of G (so works for sparse, parallel etc)
- Bound decreases with $M \Longrightarrow$ replication may help (2.5D algs)

First Extension Strategy

- Loomis-Whitney \implies Hölder-Brascamp-Lieb (HBL)
- Volume of $E \subset \mathbb{R}^3 \Longrightarrow$ Volume of $E \subset \mathbb{R}^d$
- Projections from (i, j, k) to $(i, j), (i, k), (k, j) \Longrightarrow$ any linear projections ϕ_1, \dots, ϕ_m
- $\operatorname{vol}(E) \leq (\operatorname{area}(E_{ij}))^{1/2} \cdot (\operatorname{area}(E_{ik}))^{1/2} \cdot (\operatorname{area}(E_{jk}))^{1/2} \Longrightarrow$ $\operatorname{vol}(E) \leq C \cdot \prod_{i=1}^{m} \operatorname{vol}(\phi_i(E))^{s_i}$

Where do we get exponents s_i and $C < \infty$?

Continuous HBL

Continuous HBL Linear Program (C-HBL-LP):

$$\dim(\mathbb{R}^d) = d = \sum_{i=1}^m s_i \cdot \dim(\phi_i(\mathbb{R}^d)) = \sum_{i=1}^m s_i \cdot d_i$$

and for all subspaces $H \leq \mathbb{R}^d$, $\dim(H) \leq \sum_{i=1}^m s_i \cdot \dim(\phi_i(H))$

Note: There exist infinitely many H, but only finitely many possible constraints in C-HBL-LP (at most $(d+1)^{m+1}$)

Thm (B/C/C/T): $s_i \ge 0$ satisfy C-HBL-LP *if and only if* $\exists C < \infty$ such that for all $f_i : \mathbb{R}^{d_i} \to [0, \infty)$ in L_{1/s_i}

$$\int_{\mathbb{R}^d} \prod_{i=1}^m f_i(\phi_i(x)) dx \le C \cdot \prod_{i=1}^m (\int_{\mathbb{R}^d_i} [f_i(y)]^{1/s_i} dy)^{s_i} = C \cdot \prod_{i=1}^m \|f_i\|_{1/s_i}$$

Continuous HBL - Special case (1/3)

$$\dim(\mathbb{R}^d) = d = \sum_{i=1}^m s_i \cdot \dim(\phi_i(\mathbb{R}^d)) = \sum_{i=1}^m s_i \cdot d_i$$

and for all subspaces $H \leq \mathbb{R}^d$, $\dim(H) \leq \sum_{i=1}^m s_i \cdot \dim(\phi_i(H))$

Thm (B/C/C/T): $s_i \ge 0$ satisfy C-HBL-LP *if and only if* $\exists C < \infty$ such that for all $f_i : \mathbb{R}^{d_i} \to [0, \infty)$ in L_{1/s_i}

$$\int_{\mathbb{R}^d} \prod_{i=1}^m f_i(\phi_i(x)) dx \le C \cdot \prod_{i=1}^m \|f_i\|_{1/s_i}$$

Hölder's Inequality: Choose all ϕ_i = identity, so $\sum_{i=1}^m s_i = 1$

$$\|\prod_{i=1}^{m} f_i(x)\|_1 \le C \prod_{i=1}^{m} \|f_i\|_{1/s_i} \quad \dots \text{ can show } C = 1$$

Continuous HBL - Special case (2/3)

$$\dim(\mathbb{R}^d) = d = \sum_{i=1}^m s_i \cdot \dim(\phi_i(\mathbb{R}^d)) = \sum_{i=1}^m s_i \cdot d_i \qquad (*)$$

and for all subspaces $H \leq \mathbb{R}^d$, $\dim(H) \leq \sum_{i=1}^m s_i \cdot \dim(\phi_i(H))$

Thm (B/C/C/T): $s_i \ge 0$ satisfy C-HBL-LP *if and only if* $\exists C < \infty$ such that for all $f_i : \mathbb{R}^{d_i} \to [0, \infty)$ in L_{1/s_i}

$$\int_{\mathbb{R}^d} \prod_{i=1}^m f_i(\phi_i(x)) dx \le C \cdot \prod_{i=1}^m \|f_i\|_{1/s_i}$$

Brascamp-Lieb Inequality: Given only (*), C maximized by $f_i(x) = \exp(-x^T A_i x)$ for some s.p.d. A_i (C could be ∞)

Continuous HBL - Special case (3/3)

$$\dim(\mathbb{R}^d) = d = \sum_{i=1}^m s_i \cdot \dim(\phi_i(\mathbb{R}^d)) = \sum_{i=1}^m s_i \cdot d_i$$

and for all subspaces $H \leq \mathbb{R}^d$, $\dim(H) \leq \sum_{i=1}^m s_i \cdot \dim(\phi_i(H))$

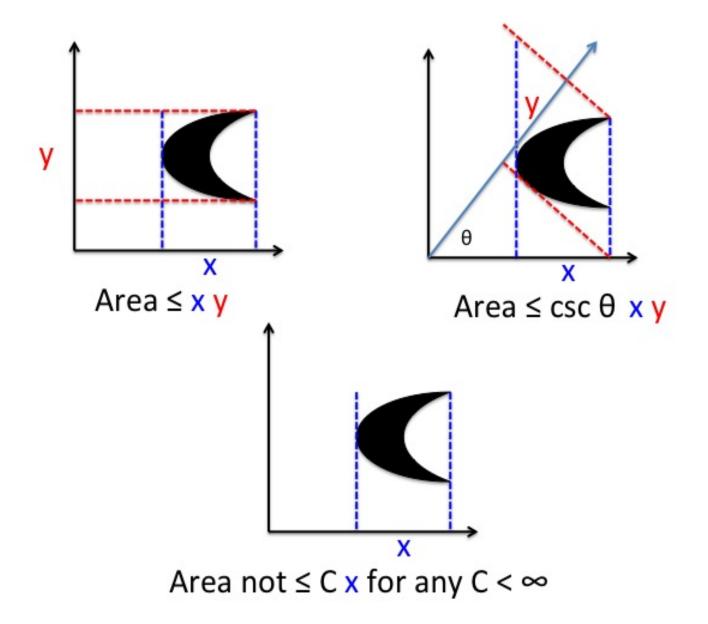
Thm (B/C/C/T): $s_i \ge 0$ satisfy C-HBL-LP *if and only if* $\exists C < \infty$ such that for all $f_i : \mathbb{R}^{d_i} \to [0, \infty)$ in L_{1/s_i}

$$\int_{\mathbb{R}^d} \prod_{i=1}^m f_i(\phi_i(x)) dx \le C \cdot \prod_{i=1}^m \|f_i\|_{1/s_i}$$

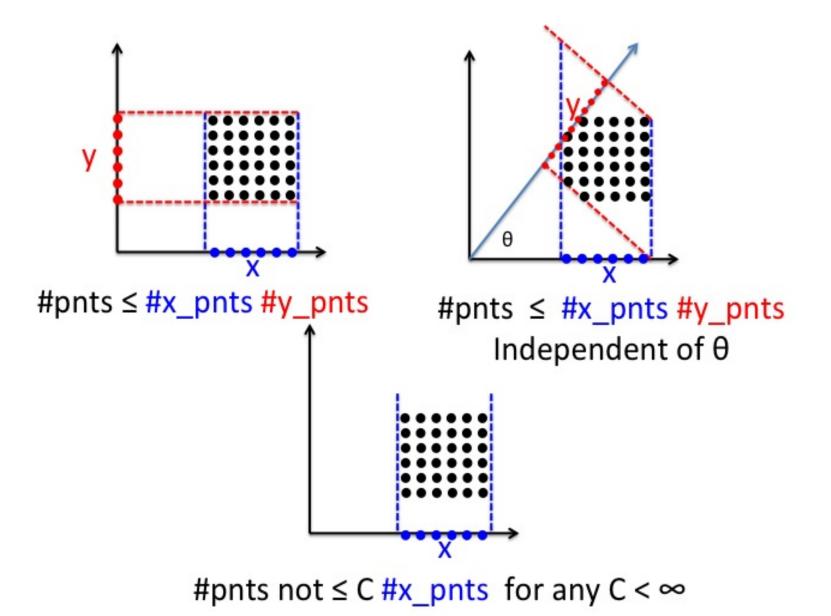
Loomis-Whitney & beyond: Given bounded $E \subset \mathbb{R}^d$, f_i = indicator function of $\phi_i(E)$,

$$\operatorname{vol}(E) \le C \cdot \prod_{i=1}^{m} (\operatorname{vol}(\phi_i(E)))^{s_i}$$

Illustration of C-HBL-LP



But we want to count lattice points \equiv loop iterations



Second Extension Strategy: Discrete HBL (1/2)

• Count lattice points instead of volumes:

- Lattice points correspond to loop iterations

$$(i,j,k)\longleftrightarrow C(i,j)+=A(i,k)\ast B(k,j)$$

– Projected lattice points correspond to array entries

$$(i,j) \longleftrightarrow C(i,j), \quad \text{etc}$$

- Vector space $\mathbb{R}^d \Longrightarrow$ abelian group \mathbb{Z}^d under addition
- Subspaces $H \leq \mathbb{R}^d \Longrightarrow$ subgroups $H \leq \mathbb{Z}^d$
- Linear projection $\phi_i \Longrightarrow$ group homomorphism ϕ_i
- Subspace $\phi_i(H) \Longrightarrow$ subgroup $\phi_i(H)$
- $\dim(H) \Longrightarrow \operatorname{rank}(H), \dim(\phi_i(H)) \Longrightarrow \operatorname{rank}(\phi_i(H))$
- Like C-HBL-LP, but all H, ϕ_i are integer, not real

Second Extension Strategy: Discrete HBL (2/2) Discrete HBL Linear Program (D-HBL-LP): for all subgroups $H \leq \mathbb{Z}^d$, rank $(H) \leq \sum_{i=1}^m s_i \cdot \operatorname{rank}(\phi_i(H))$

Note: There exist infinitely many H, but only finitely many possible constraints in D-HBL-LP (at most $(d+1)^{m+1}$)

Thm $(\mathbf{B}/\mathbf{C}/\mathbf{C}/\mathbf{T})$: $s_i \geq 0$ satisfy D-HBL-LP *if and only if* for any finite set $E \subset \mathbb{Z}^d$ its cardinality |E| is bounded by

$$|E| \le \prod_{i=1}^{m} |\phi_i(E)|^{s_i} \quad \dots \quad C = 1!$$

We want tightest bound when $|\phi_i(E)| \leq 2M$, i.e. $|E| \leq (2M)^{\sum_{i=1}^m s_i}$ \implies Compute $s_{HBL} \equiv \min \sum_{i=1}^m s_i$ subject to D-HBL-LP

Thm: #words_moved = $\Omega(\#$ iterations/ $M^{s_{HBL}-1})$

Some ideas in the proof of Discrete HBL (1/2) $\forall H \leq \mathbb{Z}^d$, rank $(H) \leq \sum_{i=1}^m s_i \cdot \operatorname{rank}(\phi_i(H)) \iff |E| \leq \prod_{i=1}^m |\phi_i(E)|^{s_i}$ • Necessity

- For any
$$H \leq \mathbb{Z}^d$$
, let E_n be $n \times n \times \dots \times n$ "brick" in H
 $-|E_n| = \Theta(n^{\operatorname{rank}(H)})$ and $|\phi_i(E_n)| = O(n^{\operatorname{rank}(\phi_i(H))})$
 $\Theta(n^{\operatorname{rank}(H)}) = |E_n| \leq \prod_{i=1}^m |\phi_i(E_n)|^{s_i}$
 $= O(\prod_{i=1}^m n^{s_i \cdot \operatorname{rank}(\phi_i(H))}) = O(n^{\sum_{i=1}^n s_i \cdot \operatorname{rank}(\phi_i(H))})$

i=1

Some ideas in the proof of Discrete HBL (2/2)

 $\forall H \leq \mathbb{Z}^d$, rank $(H) \leq \sum_{i=1}^m s_i \cdot \operatorname{rank}(\phi_i(H)) \iff |E| \leq \prod_{i=1}^m |\phi_i(E)|^{s_i}$

- Sufficiency (hard part)
 - Suffices to consider extreme points $s = [s_1, ..., s_m]$ of polytope defined by D-HBL-LP
 - Induction over d
 - -Def: $H \leq \mathbb{Z}^d$ critical if rank $(H) = \sum_{i=1}^m s_i \cdot \operatorname{rank}(\phi_i(H))$
 - Given $V \leq \mathbb{Z}^d$ and s extreme point, then either \exists critical $\{0\} < H < V$ (induction on H) or $s \in \{0, 1\}^m$

Applying Bounds to More General Code (1/5)

• General model:

for all $\mathcal{I} \in \mathcal{Z} \subset \mathbb{Z}^d$, in some order inner_loop $(\mathcal{I}, A_1(\phi_1(\mathcal{I})), ..., A_m(\phi_m(\mathcal{I})))$

- Ex: LU inner loop: A(i, j) = A(i, j) L(i, k) * U(k, j)
 - $-\operatorname{Ok}$ to ignore loop scaling columns of L
 - Ok to overwrite A: L(i,k) = A(i,k) for i > k, ditto for U
 - Same idea applies to BLAS, Cholesky, LDL^T , ...
 - Same idea applies to tensor contractions
 - $-\operatorname{QR},$ eig, SVD need another idea

Applying Bounds to More General Code (2/5)

• General model:

for all $\mathcal{I} \in \mathcal{Z} \subset \mathbb{Z}^d$, in some order inner_loop($\mathcal{I}, A_1(\phi_1(\mathcal{I})), ..., A_m(\phi_m(\mathcal{I}))$)

- Ex: Computing $B = A^k$ (k odd) for $i_1 = 1 : \lfloor k/2 \rfloor$, $C = A \cdot B$, $B = A \cdot C$
- Imperfectly nested loops
- Can't just omit $B = A \cdot C$; infinite data reuse possible, so any lower bound $\propto |\mathcal{Z}|$ must be 0; leads to infeasible HBL-LP
- Solution: *impose reads/writes*: let $\hat{A}[1] = A$, then for $i_1 = 2 : k$, $\hat{A}[i_1] = \hat{A}[1] * \hat{A}[i_1 - 1]$
- Apply lower bound to new code, subtract added #reads/writes
- #words_moved = $\Omega(kn^3/M^{1/2} kn^2) = \Omega(kn^3/M^{1/2})$

Applying Bounds to More General Code (3/5)

• General model:

for all $\mathcal{I} \in \mathcal{Z} \subset \mathbb{Z}^d$, in some order inner_loop $(\mathcal{I}, A_1(\phi_1(\mathcal{I})), ..., A_m(\phi_m(\mathcal{I})))$

• Ex: Database join

for
$$i_1 = 1 : N_1$$
, for $i_2 = 1 : N_2$
if predicate $(R(i_1), S(i_2)) =$ true,
output $(i_1, i_2) = func(R(i_1), S(i_2))$

-Write $\mathcal{Z} = \mathcal{Z}_T \cup \mathcal{Z}_F$, depending on predicate

- Apply lower bound to \mathcal{Z}_T , \mathcal{Z}_F separately, take max - #words_moved = $\Omega(\max(|\mathcal{Z}_T|, |\mathcal{Z}|/M))$

Applying Bounds to More General Code (4/5)

• General model:

for all $\mathcal{I} \in \mathcal{Z} \subset \mathbb{Z}^d$, in some order inner_loop($\mathcal{I}, A_1(\phi_1(\mathcal{I})), ..., A_m(\phi_m(\mathcal{I}))$)

- Ex: Dense or sparse QR decomposition, using orthogonal transformations
- Not one "algorithm," many variations: un/blocked Givens/Householder, order in which entries zeroed out, ...
- Blocking orth. trans. \Rightarrow imperfectly nested loops
 - Challenge: output of first nest input to second, so need to bound data reuse

Applying Bounds to More General Code (5/5)

- Dense or sparse QR decomposition, continued
- Thm 1: #words_moved = $\Omega(\#$ flops $/M^{1/2})$ if
 - Blocked Householder with any block sizes
 - One Householder transform per column
- Thm 2: #words_moved = $\Omega(\#$ flops $/M^{1/2})$ if
 - "Forward Progress": each entry zeroed out once
 - $-\operatorname{Block}$ size must be 1
- Conjecture: Forward Progress sufficient
- Generalizes to eigenvalue problems

Decidability of the Lower Bound (1/3)

- Recall Continuous HBL-LP: $\dim(\mathbb{R}^d) = d = \sum_{i=1}^m s_i \cdot \dim(\phi_i(\mathbb{R}^d))$ and $\forall H \leq \mathbb{R}^d$, $\dim(H) \leq \sum_{i=1}^m s_i \cdot \dim(\phi_i(H))$
- To write this down, need to solve: Given $r_H, r_{H_1}, ..., r_{H_m}$, decide if $\exists H \leq \mathbb{R}^d$ s.t. $\dim(H) = r_H, \dim(\phi_1(H)) = r_{H_1}, ..., \dim(\phi_m(H)) = r_{H_m}$
- Write H as $d \times d$ matrix
- Write each ϕ_i as $d_i \times d$ matrix
- Express rank conditions by (non)zero constraints on minors
- Tarski-decidable
 - Enough to get upper bound on $s_{HBL} \Longrightarrow$ valid lower bound on communication (possibly too low)

Decidability of the Lower Bound (2/3)

- What about Discrete HBL-LP? $\forall H \leq \mathbb{Z}^d$, $\operatorname{rank}(H) \leq \sum_{i=1}^m s_i \cdot \operatorname{rank}(\phi_i(H))$
- To write this down, need to solve: Given $r_H, r_{H_1}, \dots, r_{H_m}$, decide if $\exists H \leq \mathbb{Z}^d$ s.t. $\operatorname{rank}(H) = r_H$, $\operatorname{rank}(\phi_1(H)) = r_{H_1}$,..., $\operatorname{rank}(\phi_m(H)) = r_{H_m}$
- Can encode with minors as before
- Thm: Whether any given system of polynomial equations with rational coefficients has a rational solution or not can be encoded by right choice of $\phi_1, ..., \phi_m$.
- Cor: Being able to write down D-HBL-LP \iff \exists decision procedure for Hilbert's 10th Problem over \mathbb{Q}

 $-\operatorname{Over} \mathbb Q$ instead of $\mathbb Z$ because all conditions homogeneous

Decidability of the Lower Bound (3/3)

- What about Discrete HBL-LP? $\forall H \leq \mathbb{Z}^d$, $\operatorname{rank}(H) \leq \sum_{i=1}^m s_i \cdot \operatorname{rank}(\phi_i(H))$
- Constraints define polytope \mathcal{P} in space of $[s_1, ..., s_m] \in \mathbb{R}^m$
- Enough to get any subset of subgroups H defining \mathcal{P}
- Let $(H_1, H_2, H_3, ...)$ be any enumeration of all $H \leq \mathbb{Z}^d$
- Let \mathcal{P}_i be polytope defined by $(H_1, ..., H_i)$
- "Simple" decidability algorithm:

i = 0, repeat i = i + 1 until $\mathcal{P}_i = \mathcal{P}$

• Thm: Decidable whether a vertex of \mathcal{P}_i in \mathcal{P}

– Similar induction idea as before

• Better algorithm: which subgroups H to try first?

Special Case: When subscripts are just subsets of indices (1/3)

- \bullet Ex: linear algebra, N-body, database join, ...
 - Matmul: (i, j, k) are indices, subscripts A(i, k), B(k, j), C(i, j)
- Much simpler:
 - Easy to write down Discrete HBL-LP to get lower bound
 - Easy to attain lower bound (modulo dependencies):
 Dual of Discrete HBL-LP gives optimal block sizes
 - Basis of examples at start of talk
- Extends to subsets of unimodular transformations of indices
 - -Ex: subsets of (i, 2i + j, 3i + 2j + k)

Special Case: When subscripts are just subsets of indices (2/3)

- $i_1, ..., i_d$ be indices, $\phi_1, ..., \phi_m$ be projections
- Let $\Delta_{j,k} = 1$ if i_k in range of ϕ_j , else 0
- Thm: Let $s = [s_1, ..., s_m]$ minimize $\mathbf{1}^T s \equiv s_{HBL}$ such that $s^T \Delta \geq \mathbf{1}^T$. Then #words_moved = $\Omega(\# \text{loop_iterations}/M^{s_{HBL}-1})$
- Proof idea
 - Constraints $s^T \Delta \ge 1$ are subset of Discrete HBL-LP, for all H spanned by (0, ..., 0, 1, 0, ..., 0) (k-th entry = 1)
 - Show this subset implies $\mathrm{rank}(H) \leq \sum_{j=1}^m s_j \mathrm{rank}(\phi_j(H))$ for all $H \leq \mathbb{Z}^d$

Special Case: When subscripts are just subsets of indices (3/3)

- $i_1, ..., i_d$ be indices, $\phi_1, ..., \phi_m$ be projections
- Let $\Delta_{j,k} = 1$ if i_k in range of ϕ_j , else 0
- Dual LP: Let $x = [x_1, ..., x_d]$ maximize $\mathbf{1}^T x \equiv s_{HBL}$ such that $\Delta x \leq \mathbf{1}^T$.
- Thm: The solution x of the Dual LP gives the optimal block sizes to minimize communication: i_k blocked by M^{x_k}
- Proof idea
 - Each constraint in $\Delta x \leq \mathbf{1}$ bounds number of entries of each array by M
 - $-\mathbf{1}^T x = s_{HBL}$ says number of inner loop iterations per block is $M^{s_{HBL}}$.
- Extends to parallel case, "n.5D" algorithms

Some improved algorithms that avoid communication

- Work of many people!
 - $-\operatorname{Up}$ to $\mathbf{12x}$ faster for 2.5D matmul on 64K core IBM BG/P
 - Up to $\mathbf{3x}$ faster for tensor contractions on 3K core Cray XE6
 - $-\operatorname{Up}$ to $\mathbf{6.2x}$ faster for APSP on 24K core Cray XE6
 - $-\operatorname{Up}$ to $\mathbf{2.1x}$ faster for 2.5D LU on 64K core IBM BG/P
 - Up to **11.8x** for direct N-body on 32K core IBM BP/P
 - Up to ${\bf 13x}$ for TSQR on Tesla C2050 Ferma NVIDIA GPU
 - Up to $\mathbf{6.7x}$ faster for symeig (band A) on 10 core Intel Westmere
 - $-\operatorname{Up}$ to $\mathbf{2x}$ faster for 2.5D Strassen on 38K core Cray XT4
- \bullet Communicate asymptotically < existing algorithms in theory
 - $-SVD, LDL^T, 2.5D QR, Nonsymmetric eigenproblem$
 - $-\operatorname{QR}$ with column pivoting, other pivoting schemes
 - Sparse Cholesky, for suitable graphs

Conclusions

- Possible to derive decidable communication lower bounds for many widely used algorithms that access arrays
- Possible to achieve these bounds in many cases, leading to faster algorithms
- Open problems
 - $-\operatorname{Make}$ derivation of lower bounds efficient, automate it
 - Conjecture: Always attainable, modulo loop dependencies
 - Implement in compilers

Key to Success

Key to Success

Don't Communic...