Introduction to Communication-Avoiding Algorithms

www.cs.berkeley.edu/~demmel/SC14_tutorial

Jim Demmel
EECS & Math Departments
UC Berkeley

Why avoid communication? (1/2)

Algorithms have two costs (measured in time or energy):
1. Arithmetic (FLOPS)
2. Communication: moving data between
 – levels of a memory hierarchy (sequential case)
 – processors over a network (parallel case).
Why avoid communication? (2/3)

- Running time of an algorithm is sum of 3 terms:
 - \(\text{# flops} \times \text{time_per_flop} \)
 - \(\text{# words moved} / \text{bandwidth} \)
 - \(\text{# messages} \times \text{latency} \)

- Time_per_flop << 1/ bandwidth << latency
- Gaps growing exponentially with time [FOSC]

<table>
<thead>
<tr>
<th>Time_per_flop</th>
<th>Bandwidth</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59</td>
<td>26%</td>
<td>15%</td>
</tr>
<tr>
<td>DRAM</td>
<td>23%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Avoid communication to save time

Why Minimize Communication? (2/2)

[Graph showing energy comparison between different levels of memory hierarchy]

Source: John Shalf, LBL
Why Minimize Communication? (2/2)

Minimize communication to save energy

Goals

• Redesign algorithms to avoid communication
 • Between all memory hierarchy levels
 • L1 ↔ L2 ↔ DRAM ↔ network, etc
• Attain lower bounds if possible
 • Current algorithms often far from lower bounds
 • Large speedups and energy savings possible

Source: John Shalf, LBL
President Obama cites Communication-Avoiding Algorithms in the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale Computing Systems. On modern computer architectures, communication between processors takes longer than the performance of a floating point arithmetic operation by a given processor. ASCR researchers have developed a new method, derived from commonly used linear algebra methods, to minimize communications between processors and the memory hierarchy, by reformulating the communication patterns specified within the algorithm. This method has been implemented in the TRILINOS framework, a highly-regarded suite of software, which provides functionality for researchers around the world to solve large scale, complex multi-physics problems.”

Collaborators and Supporters

- Austin Benson, Maryam Dehnavi, Mark Hoemmen, Shoaib Kamil, Marghoob Mohiyuddin
- Abhinav Bhatel, Aydin Buluc, Michael Christ, Ioana Dumitriu, Armando Fox, David Gleich, Ming Gu, Jeff Hammond, **Mike Heroux**, Olga Holtz, Kurt Keutzer, Julien Langou, Devin Matthews, Tom Scanlon, Michelle Straw, Sam Williams, Hua Xiang
- **Jack Dongarra, Jakub Kurzak**, Dulcerea Becker, Ichitaro Yamazaki, ...
- Sivan Toledo, Alex Druinsky, Inon Peled
- Laura Grigori, Sebastien Cayrols, Simplice Donfack, Mathias Jacquelin, Amal Khabou, Sophie Moufawad, Mikolaj Szylarladi
- Members of ParLab, ASPIRE, BEBOP, CACHE, EASI, FASTMath, MAGMA, PLASMA
- Thanks to DOE, NSF, UC Discovery, INRIA, Intel, Microsoft, Mathworks, National Instruments, NEC, Nokia, NVIDIA, Samsung, Oracle
- bebop.cs.berkeley.edu
Summary of CA Algorithms

• “Direct” Linear Algebra
 • Lower bounds on communication for linear algebra problems like $Ax=b$, least squares, $Ax = \lambda x$, SVD, etc
 • New algorithms that attain these lower bounds
 • Being added to libraries: Sca/LAPACK, PLASMA, MAGMA
 • Large speed-ups possible
 • Autotuning to find optimal implementation

• Ditto for programs accessing arrays (eg n-body)
• Ditto for “Iterative” Linear Algebra

Outline

• “Direct” Linear Algebra
 • Lower bounds on communication
 • New algorithms that attain these lower bounds

• Ditto for programs accessing arrays (eg n-body)
• Ditto for “Iterative” Linear Algebra
Outline

• “Direct” Linear Algebra
 • Lower bounds on communication
 • New algorithms that attain these lower bounds
• Ditto for programs accessing arrays (eg n-body)
• Ditto for “Iterative” Linear Algebra

Lower bound for all “direct” linear algebra

• Let M = “fast” memory size (per processor)

\[\text{words}_\text{moved} \ (\text{per processor}) = \Omega(\text{flops} \ (\text{per processor}) / M^{1/2}) \]

• Parallel case: assume either load or memory balanced
• Holds for
 – Matmul
Lower bound for all “direct” linear algebra

- Let M = “fast” memory size (per processor)

\[
\#\text{words_moved (per processor)} = \Omega(\#\text{flops (per processor)} / M^{1/2})
\]

\[
\#\text{messages_sent} \geq \#\text{words_moved} / \text{largest_message_size}
\]

- Parallel case: assume either load or memory balanced

- Holds for
 - Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...
 - Some whole programs (sequences of these operations, no matter how individual ops are interleaved, eg A^k)
 - Dense and sparse matrices (where #flops $\ll n^3$)
 - Sequential and parallel algorithms
 - Some graph-theoretic algorithms (eg Floyd-Warshall)

SIAM SIAG/Linear Algebra Prize, 2012
Ballard, D., Holtz, Schwartz
Can we attain these lower bounds?

• Do conventional dense algorithms as implemented in LAPACK and ScALAPACK attain these bounds?
 — Often not
• If not, are there other algorithms that do?
 — Yes, for much of dense linear algebra
 — New algorithms, with new numerical properties, new ways to encode answers, new data structures
 — Not just loop transformations
• Only a few sparse algorithms so far
• Lots of work in progress
• Case study: Matrix Multiply

Naïve Matrix Multiply

\[
\begin{align*}
\text{Naïve Matrix Multiply} & \quad \{\text{implements } C = C + A*B\} \\
\text{for } i = 1 \text{ to } n \\
& \quad \quad \text{for } j = 1 \text{ to } n \\
& \quad \quad \quad \text{for } k = 1 \text{ to } n \\
C(i,j) &= C(i,j) + A(i,k) \times B(k,j)
\end{align*}
\]
Naïve Matrix Multiply

\{\text{implements } C = C + A \times B\}

\text{for } i = 1 \text{ to } n
\quad \{\text{read row } i \text{ of } A \text{ into fast memory}\}
\text{for } j = 1 \text{ to } n
\quad \{\text{read } C(i,j) \text{ into fast memory}\}
\quad \{\text{read column } j \text{ of } B \text{ into fast memory}\}
\text{for } k = 1 \text{ to } n
\quad C(i,j) = C(i,j) + A(i,k) \times B(k,j)
\quad \{\text{write } C(i,j) \text{ back to slow memory}\}

\[
C(i,j) = C(i,j) + A(i,:) \times B(:,j)
\]

Naïve Matrix Multiply

\{\text{implements } C = C + A \times B\}

\text{for } i = 1 \text{ to } n
\quad \{\text{read row } i \text{ of } A \text{ into fast memory}\} \quad \text{... } n^2 \text{ reads altogether}
\text{for } j = 1 \text{ to } n
\quad \{\text{read } C(i,j) \text{ into fast memory}\} \quad \text{... } n^2 \text{ reads altogether}
\quad \{\text{read column } j \text{ of } B \text{ into fast memory}\} \quad \text{... } n^3 \text{ reads altogether}
\text{for } k = 1 \text{ to } n
\quad C(i,j) = C(i,j) + A(i,k) \times B(k,j)
\quad \{\text{write } C(i,j) \text{ back to slow memory}\} \quad \text{... } n^2 \text{ writes altogether}

\[
n^3 + 3n^2 \text{ reads/writes altogether – dominates } 2n^3 \text{ arithmetic}
\]
Consider A, B, C to be n/b-by-n/b matrices of b-by-b subblocks where b is called the block size; assume 3 b-by-b blocks fit in fast memory.

For $i = 1$ to n/b
 For $j = 1$ to n/b
 {read block $C(i,j)$ into fast memory}
 For $k = 1$ to n/b
 {read block $A(i,k)$ into fast memory}
 {read block $B(k,j)$ into fast memory}
 $C(i,j) = C(i,j) + A(i,k) \cdot B(k,j)$ \{do a matrix multiply on blocks\}
 {write block $C(i,j)$ back to slow memory}

\[
\begin{align*}
C(i,j) &= C(i,j) + A(i,k) \cdot B(k,j) \\
2n^3/b + 2n^2 \text{ reads/writes} &\ll 2n^3 \text{ arithmetic - Faster!}
\end{align*}
\]
Does blocked matmul attain lower bound?

- Recall: if 3 b-by-b blocks fit in fast memory of size M, then \#reads/writes = \(2n^3/b + 2n^2\)
- Make b as large as possible: \(3b^2 \leq M\), so \#reads/writes \(\geq 2n^3/(M/3)^{1/2} + 2n^2\)
- Attains lower bound = \(\Omega \left(\frac{\#flops}{M^{1/2}}\right)\)

- But what if we don’t know M?
- Or if there are multiple levels of fast memory?
- How do we write the algorithm?

How hard is hand-tuning matmul, anyway?

- Results of 22 student teams trying to tune matrix-multiply, in CS267 Spr09
- Students given "blocked" code to start with (7x faster than naive)
 - Still hard to get close to vendor tuned performance (ACML) (another 6x)
- For more discussion, see www.cs.berkeley.edu/~volkov/cs267.sp09/hw1/results/
How hard is hand-tuning matmul, anyway?

Recursive Matrix Multiplication (RMM) (1/2)

- For simplicity: square matrices with $n = 2^m$
- $C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix} = A \cdot B = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$

 \[C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} + A_{11} \cdot B_{12} + A_{12} \cdot B_{22}\]
 \[C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}\]
 \[C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} + A_{21} \cdot B_{12} + A_{22} \cdot B_{22}\]
 \[C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}\]
- True when each A_{ij} etc 1x1 or $n/2 \times n/2$

```python
func C = RMM (A, B, n)
    if n = 1, C = A * B, else
        { C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2) 
          C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2) 
          C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2) 
          C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2) 
        }
    return
```
Recursive Matrix Multiplication (RMM) (2/2)

```java
func C = RMM (A, B, n)
if n=1, C = A * B, else
    {  
        C_{11} = RMM (A_{11}, B_{11}, n/2) + RMM (A_{12}, B_{21}, n/2)
        C_{12} = RMM (A_{11}, B_{12}, n/2) + RMM (A_{12}, B_{22}, n/2)
        C_{21} = RMM (A_{21}, B_{11}, n/2) + RMM (A_{22}, B_{21}, n/2)
        C_{22} = RMM (A_{21}, B_{12}, n/2) + RMM (A_{22}, B_{22}, n/2)  
    }
return
```

A(n) = # arithmetic operations in RMM(. , , n)
= 8 · A(n/2) + 4(n/2)^2 if n > 1, else 1
= 2n^3 … same operations as usual, in different order

W(n) = # words moved between fast, slow memory by RMM(. , , n)
= 8 · W(n/2) + 12(n/2)^2 if 3n^2 > M , else 3n^2
= O(n^3 / M^{1/2} + n^2) … same as blocked matmul

“Cache oblivious”, works for memory hierarchies, but not panacea

CARMA Performance: Shared Memory

Intel Emerald: 4 Intel Xeon X7560 x 8 cores, 4 x NUMA

Square: m = k = n

![Graph](image)

Peak (single)

Peak (double)

CARMA (single)

CARMA (double)

MKL (single)

MKL (double)
CARMA Performance: Shared Memory

Intel Emerald: 4 Intel Xeon X7560 x 8 cores, 4 x NUMA

Inner Product: m = n = 64

- **CARMA (single)**
- **CARMA (double)**
- **MKL (single)**
- **MKL (double)**

Why is CARMA Faster?

L3 Cache Misses

Shared Memory Inner Product (m = n = 64; k = 524,288)

- **CARMA:** 97% Fewer Misses
- **MKL:** 86% Fewer Misses
Parallel MatMul with 2D Processor Layout

• P processors in $P^{1/2} \times P^{1/2}$ grid
 – Processors communicate along rows, columns
• Each processor owns $n/P^{1/2} \times n/P^{1/2}$ submatrices of A, B, C
• Example: P=16, processors numbered from P_{00} to P_{33}
 – Processor P_{ij} owns submatrices A_{ij}, B_{ij} and C_{ij}

\[
\begin{array}{cccc}
 C &=& A & * & B \\
 P_{00} & P_{01} & P_{02} & P_{03} \\
 P_{10} & P_{11} & P_{12} & P_{13} \\
 P_{20} & P_{21} & P_{22} & P_{23} \\
 P_{30} & P_{31} & P_{32} & P_{33} \\
\end{array}
\]

SUMMA Algorithm

• SUMMA = Scalable Universal Matrix Multiply
 – Attains lower bounds:
 • Assume fast memory size $M = O(n^2/P)$ per processor – 1 copy of data
 • \#words_moved = $\Omega \left(\text{flops} / M^{1/2} \right) = \Omega \left(\frac{n^3}{P} / \frac{n^2}{P}^{1/2} \right) = \Omega \left(\frac{n^2}{P^{1/2}} \right)$
 • \#messages = $\Omega \left(\text{flops} / M^{3/2} \right) = \Omega \left(\frac{n^3}{P} / \frac{n^2}{P}^{3/2} \right) = \Omega \left(\frac{P^{1/2}}{n^2} \right)$
 – Can accommodate any processor grid, matrix dimensions & layout
 – Used in practice in PBLAS = Parallel BLAS
 • [www.netlib.org/lapack/lawns/lawn\{96,100\}.ps]
SUMMA – n x n matmul on $P^{1/2} \times P^{1/2}$ grid

- $C(i, j)$ is $n/P^{1/2} \times n/P^{1/2}$ submatrix of C on processor P_{ij}
- $A(i,k)$ is $n/P^{1/2} \times b$ submatrix of A
- $B(k,j)$ is $b \times n/P^{1/2}$ submatrix of B
- $C(i,j) = C(i,j) + \sum_k A(i,k) \cdot B(k,j)$
 - summation over submatrices
- Need not be square processor grid

For $k=0$ to $n/b-1$
- for all $i = 1$ to $P^{1/2}$
 - owner of $A(i,k)$ broadcasts it to whole processor row (using binary tree)
- for all $j = 1$ to $P^{1/2}$
 - owner of $B(k,j)$ broadcasts it to whole processor column (using bin. tree)

Receive $A(i,k)$ into A_{col}
Receive $B(k,j)$ into B_{row}

$C_{myproc} = C_{myproc} + A_{col} \cdot B_{row}$

- Attains bandwidth lower bound
- Attains latency lower bound if b near maximum $n/P^{1/2}$
Summary of dense parallel algorithms
attaining communication lower bounds

- Assume nxn matrices on P processors
- Minimum Memory per processor = M = O(n^2 / P)
- Recall lower bounds:
 \[\text{words moved} = \Omega\left(\frac{n^3}{P} \div \frac{M^{1/2}}{}\right) = \Omega\left(\frac{n^2}{P^{1/2}}\right) \]
 \[\text{messages} = \Omega\left(\frac{n^3}{P} \div \frac{M^{3/2}}{}\right) = \Omega\left(\frac{P^{1/2}}{}\right) \]
- Does ScALAPACK attain these bounds?
 - For #words_moved: mostly, except nonsym. Eigenproblem
 - For #messages: asymptotically worse, except Cholesky
- New algorithms attain all bounds, up to polylog(P) factors
 - Cholesky, LU, QR, Sym. and Nonsym eigenproblems, SVD

Can we do Better?

Can we do better?

- Aren’t we already optimal?
- Why assume M = O(n^2/P), i.e. minimal?
 - Lower bound still true if more memory
 - Can we attain it?
 - Special case: “3D Matmul”: uses M = O(n^2/P^{2/3})
 - Dekel, Nassimi, Sahni [81], Bernsten [89],
 Agarwal, Chandra, Snir [90], Johnson [93],
 Agarwal, Balle, Gustavson, Joshi, Palkar [95]
 - Processors arranged in P^{1/3} x P^{1/3} x P^{1/3} grid
 - Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j),
 where each submatrix is n/P^{1/3} x n/P^{1/3}
 - M = O(n^2/P^{2/3}) is P^{1/3} times the minimum
 - Not always that much memory available...
2.5D Matrix Multiplication

- Assume can fit cn^2/P data per processor, $c>1$
- Processors form $(P/c)^{1/2} \times (P/c)^{1/2} \times c$ grid

Example: $P = 32, \ c = 2$

2.5D Matrix Multiplication

- Assume can fit cn^2/P data per processor, $c > 1$
- Processors form $(P/c)^{1/2} \times (P/c)^{1/2} \times c$ grid

Initially $P(i,j,0)$ owns $A(i,j)$ and $B(i,j)$ each of size $n(c/P)^{1/2} \times n(c/P)^{1/2}$

1. $P(i,j,0)$ broadcasts $A(i,j)$ and $B(i,j)$ to $P(i,j,k)$
2. Processors at level k perform $1/c$-th of SUMMA, i.e. $1/c$-th of $\sum_m A(i,m) \ast B(m,j)$
3. Sum-reduce partial sums $\sum_m A(i,m) \ast B(m,j)$ along k-axis so $P(i,j,0)$ owns $C(i,j)$
2.5D Matmul on BG/P, 16K nodes / 64K cores

Matrix multiplication on 16,384 nodes of BG/P

- Using c=16 matrix copies
- 12X faster
- 2.7X faster

Distinguished Paper Award, EuroPar’11
SC’11 paper by Solomonik, Bhatele, D.
Perfect Strong Scaling – in Time and Energy (1/2)

- Every time you add a processor, you should use its memory M too
- Start with minimal number of procs: PM = 3n^2
- Increase P by a factor of c → total memory increases by a factor of c
- Notation for timing model:
 - γ_T, β_T, α_T = secs per flop, per word Moved, per message of size m
 - T(cP) = n^3/(cP) [γ_T + β_T/M^{1/2} + α_T/(mM^{1/2})]
 = T(P)/c
- Notation for energy model:
 - γ_E, β_E, α_E = joules for same operations
 - δ_E = joules per word of memory used per sec
 - ε_E = joules per sec for leakage, etc.
 - E(cP) = cP [n^3/(cP) [γ_E + β_E/M^{1/2} + α_E/(mM^{1/2})] + δ_EMT(cP) + ε_ET(cP)]
 = E(P)
- Limit: \(c \leq P^{1/3} \) (3D algorithm), if starting with 1 copy of inputs

Perfect Strong Scaling – in Time and Energy (2/2)

- Perfect scaling extends to N-body, Strassen, ...
- We can use these models to answer many questions, including:
 - What is the minimum energy required for a computation?
 - Given a maximum allowed runtime T, what is the minimum energy E needed to achieve it?
 - Given a maximum energy budget E, what is the minimum runtime T that we can attain?
 - The ratio \(P = E/T \) gives us the average power required to run the algorithm. Can we minimize the average power consumed?
 - Given an algorithm, problem size, number of processors and target energy efficiency (GFLOPS/W), can we determine a set of architectural parameters to describe a conforming computer architecture?
 - See Andrew Gearhart’s PhD thesis
Handling Heterogeneity

• Suppose each of P processors could differ
 – $\gamma_i = \text{sec/flop}$, $\beta_i = \text{sec/word}$, $\alpha_i = \text{sec/message}$, $M_i = \text{memory}$
• What is optimal assignment of work F_i to minimize time?
 – $T_i = F_i \gamma_i + F_i \beta_i / M_i^{1/2} + F_i \alpha_i / M_i^{3/2} = F_i [\gamma_i + \beta_i / M_i^{1/2} + \alpha_i / M_i^{3/2}] = F_i \xi_i$
 – Choose F_i so $\sum_i F_i = n^3$ and minimizing $T = \max_i T_i$
 – Answer: $F_i = n^3 (1/\xi_i) / \sum_j (1/\xi_j)$ and $T = n^3 / \sum_j (1/\xi_j)$
• Optimal Algorithm for nxn matmul
 – Recursively divide into 8 half-sized subproblems
 – Assign subproblems to processor i to add up to F_i flops
• Works for Strassen, other algorithms...

Application to Tensor Contractions

• Ex: $C(i,j,k) = \sum_{m,n} A(i,j,m,n) * B(m,n,k)$
 – Communication symmetries lower bounds apply
• Complex symmetries possible
 – Ex: $B(m,n,k) = B(k,m,n) = ...$

 – Solomonik, Hammond, Matthews
Application to Tensor Contractions

- Ex: $C(i,j,k) = \sum_m A(i,j,m)B(m,k)$
 - Communication lower bounds apply
- Complex symmetries possible
 - Ex: $B(m,n,k) = B(k,m,n) = \ldots$
 - d-fold symmetry can save up to d!-fold flops/memory
- Heavily used in electronic structure calculations
 - Ex: NWChem, for coupled cluster (CC) approach to Schrödinger eqn.
- CTF: Cyclops Tensor Framework
 - Exploits 2.5D algorithms, symmetries
 - Up to $3x$ faster running CC than NWChem on 3072 cores of Cray XE6
 - Solomonik, Hammond, Matthews
TSQR: QR of a Tall, Skinny matrix

\[W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{pmatrix} \]

\[
\begin{pmatrix}
R_{00} \\
R_{10} \\
R_{20} \\
R_{30}
\end{pmatrix} = \begin{pmatrix}
Q_{01} & R_{01} \\
Q_{10} & R_{10} \\
Q_{20} & R_{20} \\
Q_{30} & R_{30}
\end{pmatrix}
\]

\[
\begin{pmatrix}
R_{01} \\
R_{11}
\end{pmatrix} = \begin{pmatrix}
Q_{02} & R_{02}
\end{pmatrix}
\]

Output = \{ Q_{00}, Q_{10}, Q_{20}, Q_{30}, Q_{01}, Q_{11}, Q_{02}, R_{02} \}
TSQR: An Architecture-Dependent Algorithm

Parallel: \(W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{10} \\ R_{20} \\ R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} \\ R_{11} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \\ R_{03} \end{bmatrix} \)

Sequential: \(W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{01} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \\ R_{03} \end{bmatrix} \)

Dual Core: \(W = \begin{bmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} \\ R_{01} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \\ R_{03} \end{bmatrix} \)

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Can choose reduction tree dynamically

TSQR Performance Results

- **Parallel**
 - Intel Clovertown
 - Up to 8x speedup (8 core, dual socket, 10M x 10)
 - Pentium III cluster, Dolphin Interconnect, MPICH
 - Up to 6.7x speedup (16 procs, 100K x 200)
 - BlueGene/L
 - Up to 4x speedup (32 procs, 1M x 50)
 - Tesla C 2050 / Fermi
 - Up to 13x (110,592 x 100)
 - Grid – 4x on 4 cities (Dongarra et al)
 - Cloud – 2 map-reduces (Gleich and Benson)

- **Sequential**
 - "Infinite speedup" for out-of-Core on PowerPC laptop
 - As little as 2x slowdown vs (predicted) infinite DRAM
 - LAPACK with virtual memory never finished

- **SVD costs about the same**
- **Building block for QR of a general matrix**
- **Joint work with Grigori, Hoemmen, Langou, Anderson, Ballard, Keutzer, others**
Using similar idea for TSLU as TSQR:
Use reduction tree, to do “Tournament Pivoting”

\[W^{\text{mox}} = \begin{pmatrix} W_1^* \\ W_2 \\ W_3 \\ W_4 \end{pmatrix} = \begin{pmatrix} P_1 \cdot L_1 \cdot U_1 \\ P_2 \cdot L_2 \cdot U_2 \\ P_3 \cdot L_3 \cdot U_3 \\ P_4 \cdot L_4 \cdot U_4 \end{pmatrix} \]

Choose b pivot rows of \(W_1 \), call them \(W_1^* \)
Choose b pivot rows of \(W_2 \), call them \(W_2^* \)
Choose b pivot rows of \(W_3 \), call them \(W_3^* \)
Choose b pivot rows of \(W_4 \), call them \(W_4^* \)

\[W_1^* \]
\[W_2^* \]
\[W_3^* \]
\[W_4^* \]

Choose b pivot rows, call them \(W_{12}^* \)
Choose b pivot rows, call them \(W_{34}^* \)

\[W_{12}^* = P_{12} \cdot L_{12} \cdot U_{12} \]
\[W_{34}^* = P_{34} \cdot L_{34} \cdot U_{34} \]

Choose b pivot rows

- Go back to \(W \) and use these b pivot rows
 - Move them to top, do LU without pivoting
 - Extra work, but lower order term
- Thm: As numerically stable as Partial Pivoting on a larger matrix
2.5D vs 2D LU
With and Without Pivoting

LU on 16,384 nodes of BG/P (n=131,072)

Thm: Perfect Strong Scaling impossible, because \(\text{Latency} \times \text{Bandwidth} = \Omega(n^2) \)

Exascale Machine Parameters
Source: DOE Exascale Workshop

- \(2^{20} \approx 1,000,000 \) nodes
- 1024 cores/node (a billion cores!)
- 100 GB/sec interconnect bandwidth
- 400 GB/sec DRAM bandwidth
- 1 microsec interconnect latency
- 50 nanosec memory latency
- 32 Petabytes of memory
- 1/2 GB total L1 on a node
Exascale predicted speedups for Gaussian Elimination: 2D CA-LU vs ScaLAPACK-LU

\[
\log_2 \left(\frac{n^2}{p} \right) = \log_2 \left(\frac{\text{memory}_\text{per}_\text{proc}}{p} \right)
\]

Up to 29x faster!

Other CA algorithms

- Need for pivoting arises beyond LU, in QR
 - Choose permutation \(P \) so that leading columns of \(A^*P = Q^*R \) span column space of \(A \) – Rank Revealing QR (RRQR)
 - Usual approach like Partial Pivoting
 - Put longest column first, update rest of matrix, repeat
 - Hard to do using BLAS3 at all, let alone hit lower bound
 - Use Tournament Pivoting
 - Each round of tournament selects best \(b \) columns from two groups of \(b \) columns, either using usual approach or something better (Gu/Eisenstat)
 - Thm: This approach “reveals the rank” of \(A \) in the sense that the leading \(r \times r \) submatrix of \(R \) has singular values “near” the largest \(r \) singular values of \(A \); ditto for trailing submatrix
 - Idea extends to other pivoting schemes
 - Cholesky with diagonal pivoting
 - LU with complete pivoting
 - LDL^T with complete pivoting
Communication Lower Bounds for Strassen-like matmul algorithms

<table>
<thead>
<tr>
<th>Classical</th>
<th>Strassen’s</th>
<th>Strassen-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n^3)$ matmul:</td>
<td>$O(n^{\lg 7})$ matmul:</td>
<td>$O(n^{\omega})$ matmul:</td>
</tr>
<tr>
<td>#words_moved =</td>
<td>#words_moved =</td>
<td>#words_moved =</td>
</tr>
<tr>
<td>$\Omega \left(M(n/M^{1/2})^3 / P \right)$</td>
<td>$\Omega \left(M(n/M^{1/2})^{\lg 7} / P \right)$</td>
<td>$\Omega \left(M(n/M^{1/2})^{\omega} / P \right)$</td>
</tr>
</tbody>
</table>

- Proof: graph expansion (different from classical matmul)
 - Strassen-like: DAG must be “regular” and connected
- Extends up to $M = n^2 / p^{2/\omega}$
- Best Paper Prize (SPAA’11), Ballard, D., Holtz, Schwartz appeared in JACM
- Is the lower bound attainable?

Communication Avoiding Parallel Strassen (CAPS)

- BFS vs. DFS
 - BFS: Runs all 7 multiplies in parallel, each on $P/7$ processors, needs $7/4$ as much memory
 - DFS: Runs all 7 multiplies sequentially, each on all P processors, needs $1/4$ as much memory
- CAPS
 - If sufficient memory and $P \geq 7$, then BFS step, else DFS step, end if
- In practice, how to best interleave BFS and DFS is a “tuning parameter”
Symmetric Band Reduction

- Grey Ballard and Nick Knight
- $A \Rightarrow QAQ^T = T$, where
 - $A=A^T$ is banded
 - T tridiagonal
 - Similar idea for SVD of a band matrix
- Use alone, or as second phase when A is dense:
 - Dense \Rightarrow Banded \Rightarrow Tridiagonal
- Implemented in LAPACK's sytrd
- Algorithm does not satisfy communication lower bound theorem for applying orthogonal transformations
 - It can communicate even less!
Conventional vs CA - SBR

Many tuning parameters
Right choices reduce \#words_moved by factor M/bw, not just $M^{1/2}$

Speedups of Sym. Band Reduction vs LAPACK’s DSBTRD

- Up to $17x$ on Intel Gainestown, vs MKL 10.0
 - $n=12000$, $b=500$, 8 threads
- Up to $12x$ on Intel Westmere, vs MKL 10.3
 - $n=12000$, $b=200$, 10 threads
- Up to $25x$ on AMD Budapest, vs ACML 4.4
 - $n=9000$, $b=500$, 4 threads
- Up to $30x$ on AMD Magny-Cours, vs ACML 4.4
 - $n=12000$, $b=500$, 6 threads

- Neither MKL nor ACML benefits from multithreading in DSBTRD
 - Best sequential speedup vs MKL: $1.9x$
 - Best sequential speedup vs ACML: $8.5x$
What about sparse matrices? (1/3)

- If matrix quickly becomes dense, use dense algorithm
- Ex: All Pairs Shortest Path using Floyd-Warshall
- Similar to matmul: Let $D = A$, then

 $D(i,j) = \min(D(i,j), D(i,k) + D(k,j))$

- But can’t reorder outer loop for 2.5D, need another idea
- Abbreviate $D(i,j) = \min(D(i,j),\min_k(A(i,k)+B(k,j)))$ by $D = A \odot B$
 - Dependencies ok, 2.5D works, just different semiring
- Kleene’s Algorithm:

 $D = DC-APSP(A,n)$

 $D = A$, Partition $D = [[D_{11},D_{12}];[D_{21},D_{22}]]$ into $n/2 \times n/2$ blocks

 $D_{11} = DC-APSP(D_{11},n/2)$,
 $D_{12} = D_{11} \odot D_{12}$, $D_{21} = D_{21} \odot D_{11}$, $D_{22} = D_{21} \odot D_{12}$,
 $D_{22} = DC-APSP(D_{22},n/2)$,
 $D_{21} = D_{22} \odot D_{21}$, $D_{12} = D_{12} \odot D_{22}$, $D_{11} = D_{12} \odot D_{21}$

Performance of 2.5D APSP using Kleene

Strong Scaling on Hopper (Cray XE6 with 1024 nodes = 24576 cores)

<table>
<thead>
<tr>
<th>Number of compute nodes</th>
<th>GFlops</th>
<th>c=16</th>
<th>c=4</th>
<th>c=1</th>
<th>speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>16</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>64</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>256</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>1024</td>
<td>6.2x</td>
<td>6.2x</td>
<td>6.2x</td>
<td>6.2x</td>
<td>6.2x</td>
</tr>
<tr>
<td>n=4096</td>
<td>6.2x</td>
<td>6.2x</td>
<td>6.2x</td>
<td>6.2x</td>
<td>6.2x</td>
</tr>
<tr>
<td>n=8192</td>
<td>2x</td>
<td>2x</td>
<td>2x</td>
<td>2x</td>
<td>2x</td>
</tr>
</tbody>
</table>

62
What about sparse matrices? (2/3)

• If parts of matrix becomes dense, optimize those
 • Ex: Cholesky on matrix A with good separators
 • Thm (Lipton, Rose, Tarjan, ’79) If all balanced separators of G(A) have at least w vertices, then G(chol(A)) has clique of size w
 – Need to do dense Cholesky on w x w submatrix
 • Thm: #Words_moved = \Omega(w^3/M^{1/2}) etc
 • Thm (George, ’73) Nested dissection gives optimal ordering for 2D grid, 3D grid, similar matrices
 – w = n for 2D n x n grid, w = n^2 for 3D n x n x n grid
• Sequential multifrontal Cholesky attains bounds
• PSPACES (Gupta, Karypis, Kumar) is a parallel sparse multifrontal Cholesky package
 – Attains 2D and 2.5D lower bounds (using optimal dense Cholesky on separators)

What about sparse matrices? (3/3)

• If matrix stays very sparse, lower bound unattainable, new one?
 • Ex: A*B, both diagonal: no communication in parallel case
 • Ex: A*B, both are Erdos-Renyi: Prob(A(i,j)\neq 0) = d/n, d << n^{1/2}, iid
 • Assumption: Algorithm is sparsity-independent: assignment of data and work to processors is sparsity-pattern-independent (but zero entries need not be communicated or operated on)
• Thm: A parallel algorithm that is sparsity-independent and load balanced for Erdos-Renyi matmul satisfies (in expectation)
 #Words_moved = \Omega(\min(d^n/P^{1/2}, d^2 n / P))
 – Proof exploits fact that reuse of entries of C = A*B unlikely
• Contrast general lower bound:
 #Words_moved = \Omega(d^2 n / (PM^{1/2})))
• Attained by divide-and-conquer algorithm that splits matrices along dimensions most likely to minimize cost
Summary of Direct Linear Algebra

• New lower bounds, optimal algorithms, big speedups in theory and practice
• Lots of ongoing work on
 – Algorithms:
 • LDL\(^T\), QR with pivoting, other pivoting schemes, eigenproblems, ...
 • All-pairs-shortest-path, ...
 • Both 2D (c=1) and 2.5D (c>1)
 • But only bandwidth may decrease with c>1, not latency
 • Sparse matrices
 – Platforms:
 • Multicore, cluster, GPU, cloud, heterogeneous, low-energy, ...
 – Software:
 • Integration into Sca/LAPACK, PLASMA, MAGMA, ...
• Integration of CTF into quantum chemistry/DFT applications
 – Aquarius, with ANL, UT Austin on IBM BG/Q, Cray XC30
 – Qbox, with LLNL, IBM, on IBM BG/Q
 – Q-Chem, work in progress
• Integration into big data analysis system based on Spark at AMPLab

Outline

• “Direct” Linear Algebra
 • Lower bounds on communication
 • New algorithms that attain these lower bounds
• Ditto for programs accessing arrays (eg n-body)
• Ditto for “Iterative” Linear Algebra
Recall optimal sequential Matmul

• Naïve code
 for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)

• “Blocked” code
 for i1 = 1:b:n, for j1 = 1:b:n, for k1 = 1:b:n
 for i2 = 0:b-1, for j2 = 0:b-1, for k2 = 0:b-1
 i = i1+i2, j = j1+j2, k = k1+k2
 C(i,j) += A(i,k)*B(k,j)

• Thm: Picking b = M^{1/2} attains lower bound:
 #words_moved = \Omega(n^3/M^{1/2})
• Where does 1/2 come from?

New Thm applied to Matmul

• for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)*B(k,j)
• Record array indices in matrix \(\Delta \)

\[
\Delta = \begin{pmatrix}
 1 & 0 & 1 \\
 0 & 1 & 1
\end{pmatrix}
\]

• Solve LP for \(x = [x_i, x_j, x_k]^T \):
 \[
 \max \ 1^T x \quad \text{s.t.} \quad \Delta x \leq 1
 \]
 Result: \(x = [1/2, 1/2, 1/2]^T \), \(1^T x = 3/2 = e \)
• Thm: #words_moved = \Omega(n^3/M^{e-1}) = \Omega(n^3/M^{1/2})
 Attained by block sizes \(M^{x_i}, M^{x_j}, M^{x_k} = M^{1/2}, M^{1/2}, M^{1/2} \)
New Thm applied to Direct N-Body

• for i=1:n, for j=1:n, F(i) += force(P(i) , P(j))
• Record array indices in matrix Δ
 $\Delta = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$
• Solve LP for $x = [x_i, x_j]^T$ $\max 1^T x \text{ s.t. } \Delta x \leq 1$
 – Result: $x = [1, 1]$, $1^T x = 2 = e$
• Thm: $\#\text{words}_m\text{oved} = \Omega(\frac{n^2}{M^e}) = \Omega(\frac{n^2}{M^1})$
 Attained by block sizes $M^{x_i}, M^{x_j} = M^1, M^1$

N-Body Speedups on IBM-BG/P (Intrepid)
8K cores, 32K particles

K. Yelick, E. Georganas, M. Driscoll, P. Koanantakool, E. Solomonik

![Graph showing execution time vs. replication factor](chart.png)

 Execution Time vs. Replication Factor

Communication (Reduce)
Communication (Shift)
Computation

11.8x speedup
New Thm applied to Random Code

- for i1=1:n, for i2=1:n, ..., for i6=1:n
 \[A_1(i_1,i_3,i_6) + A_5(i_2,i_6) = \text{func1}(A_2(i_1,i_2,i_4),A_3(i_2,i_3,i_5),A_4(i_3,i_4,i_6)) \]

- Record array indices in matrix \(\Delta \)

\[
\Delta = \begin{bmatrix}
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

- Solve LP for \(x = [x_1,\ldots,x_6]^T \):
 \[
 \max_{x} \, 1^T x \text{ s.t. } \Delta x \leq 1
 \]
 - Result: \(x = [2/7,3/7,1/7,2/7,3/7,4/7] \), \(1^T x = 15/7 = e \)

- Thm: #words_moved = \(\Omega(n^6/M^{e-1}) = \Omega(n^6/M^{8/7}) \)
 Attained by block sizes \(M^{2/7}, M^{3/7}, M^{1/7}, M^{2/7}, M^{3/7}, M^{4/7} \)

Approach to generalizing lower bounds

- Matmul
 \[
 \text{for } i=1:n, \text{ for } j=1:n, \text{ for } k=1:n,
 C(i,j) = A(i,k)^T B(k,j)
 \]
 \[
 \Rightarrow \text{ for } (i,j,k) \text{ in } S = \text{subset of } Z^3
 \]
 Access locations indexed by (i,j), (i,k), (k,j)

- General case
 \[
 \text{for } i_1=1:n, \text{ for } i_2 = i_1:m, \ldots \text{ for } i_k = i_3:i_4
 \]
 \[
 C((i_1+2*i_3-i_7) = \text{func}(A(i_2+3*i_4,i_1,i_2,i_1+i_2,\ldots),B(pnt(3*i_4)),\ldots)
 \]
 \[
 D(\text{something else}) = \text{func}(\text{something else}), \ldots
 \]
 \[
 \Rightarrow \text{ for } (i_1,i_2,\ldots,i_k) \text{ in } S = \text{subset of } Z^k
 \]
 Access locations indexed by “projections”, eg
 \[
 \phi_c(i_1,i_2,\ldots,i_k) = (i_1+2*i_3-i_7)
 \]
 \[
 \phi_A(i_1,i_2,\ldots,i_k) = (i_2+3*i_4,i_1,i_2,i_1+i_2,\ldots)
 \]
General Communication Bound

• Thm: Given a program with array refs given by projections ϕ_j, then there is an $e \geq 1$ such that

 $\#\text{words_moved} = \Omega(\#\text{iterations}/M^{e-1})$

 where e is the the value of a linear program:

 minimize $e = \sum_j e_j$ subject to

 $\text{rank}(H) \leq \sum_j e_j \times \text{rank}($$\phi_j(H))$ for all subgroups $H < Z^k$

• Proof depends on recent result in pure mathematics by Christ/Tao/Carbery/Bennett

Is this bound attainable (1/2)?

• But first: Can we write it down?

 – One inequality per subgroup $H < Z^d$, but still finitely many!

 – Thm (bad news): Writing down all inequalities in LP reduces to Hilbert’s 10th problem over Q

 • Could be undecidable: open question

 – Thm (good news): Another LP has same solution, is decidable (but expensive so far)

 – Thm: (better news) Easy to write LP down explicitly in many cases of interest (eg when subscript are subsets of indices)
Is this bound attainable (2/2)?

• Depends on loop dependencies
• Best case: none, or reductions (matmul)
• Thm: When all subscripts are subsets of indices, the solution \(x \) of the dual LP gives optimal tile sizes: \(M^{x_1}, M^{x_2}, \ldots \)
• Ex: Linear algebra, n-body, “random code,” join, ...
• Conjecture: always attainable (modulo dependencies): work in progress

Ongoing Work

• Identify more decidable cases
 – Works for any 3 nested loops, or 3 different subscripts
• Automate generation of approximate LPs
• Extend “perfect scaling” results for time and energy by using extra memory
• Have yet to find a case where we cannot attain lower bound – can we prove this?
• Incorporate into compilers
Outline

• “Direct” Linear Algebra
 • Lower bounds on communication
 • New algorithms that attain these lower bounds
• Ditto for programs accessing arrays (eg n-body)
• Ditto for “Iterative” Linear Algebra

Avoiding Communication in Iterative Linear Algebra

• k-steps of iterative solver for sparse Ax=b or Ax=λx
 – Does k SpMVs with A and starting vector
 – Many such “Krylov Subspace Methods”
• Goal: minimize communication
 – Assume matrix “well-partitioned”
 – Serial implementation
 • Conventional: O(k) moves of data from slow to fast memory
 • New: O(1) moves of data – optimal
 – Parallel implementation on p processors
 • Conventional: O(k log p) messages (k SpMV calls, dot prods)
 • New: O(log p) messages - optimal
• Lots of speed up possible (modeled and measured)
 – Price: some redundant computation
Communication Avoiding Kernels:
The Matrix Powers Kernel : [Ax, A^2x, ..., A^kx]

- Replace k iterations of y = A·x with [Ax, A^2x, ..., A^kx]

- Example: A tridiagonal, n=32, k=3
- Works for any “well-partitioned” A
Communication Avoiding Kernels:
The Matrix Powers Kernel : \([Ax, A^2x, ..., A^kx]\)

• Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, ..., A^kx]\)

• Example: A tridiagonal, \(n=32\), \(k=3\)
Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, ..., A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, ..., A^kx]\)

- Example: A tridiagonal, \(n=32, k=3\)
Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- Sequential Algorithm

Example: A tridiagonal, \(n=32, k=3\)

Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- Sequential Algorithm

Example: A tridiagonal, \(n=32, k=3\)
Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- Sequential Algorithm

- Example: A tridiagonal, \(n=32, k=3\)
Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- Parallel Algorithm

- Example: A tridiagonal, \(n=32, k=3\)
- Each processor communicates once with neighbors
Communication Avoiding Kernels:
The Matrix Powers Kernel : \([Ax, A^2x, \ldots, A^kx]\)

Same idea works for general sparse matrices

Simple block-row partitioning \(\rightarrow\)
(hyper)graph partitioning

Left-to-right processing \(\rightarrow\)
Traveling Salesman Problem

Minimizing Communication of GMRES to solve \(Ax=b\)

- GMRES: find \(x\) in \(\text{span}\{b, Ab, \ldots, A^k b\}\) minimizing \(\|Ax-b\|_2\)

Standard GMRES

for \(i=1\) to \(k\)

- \(w = A \cdot v(i-1)\) \(\ldots\) \(SpMV\)
- \(\text{MGS}(w, v(0), \ldots, v(i-1))\)
- update \(v(i)\), \(H\)
- endfor

solve LSQ problem with \(H\)

Communication-avoiding GMRES

\(W = [v, Av, A^2v, \ldots, A^k v]\)

\([Q,R] = \text{TSQR}(W)\)

... “Tall Skinny QR”

build \(H\) from \(R\)

solve LSQ problem with \(H\)

Sequential case: \#words moved decreases by a factor of \(k\)
Parallel case: \#messages decreases by a factor of \(k\)

•Oops – \(W\) from power method, precision lost!
"Monomial" basis $[A x, \ldots, A^k x]$ fails to converge.

Different polynomial basis $[p_1(A)x, \ldots, p_k(A)x]$ does converge.

Speed ups of GMRES on 8-core Intel Clovertown Requires Co-tuning Kernels [MHDY09]

Runtime per kernel, relative to CA-GMRES(k,t), for all test matrices, using 8 threads and restart length 60
Compute \(c_0 = b - A r_0 \). Choose \(r_1 \) arbitrary. Set \(p_0 = r_0 \), \(q_0 = 0 \).

For \(i = 0, 1, \ldots \) until convergence, Do

\[
P(i) = [p_{i-1}, Ap_{i-1}, \ldots, A^r p_0]
\]

\[
Q(i) = [q_{i-1}, Aq_{i-1}, \ldots, A^r q_0]
\]

\[
R(i) = [r_{i-1}, Ar_{i-1}, \ldots, A^r r_0]
\]

//Compute the \((3s+3) \times (3s+3) \) Gram matrix

\[
G = G^T = \begin{bmatrix} P & Q & R \end{bmatrix}
\]

//Compute the \((3s+3) \times (3s+3)\) Gram vector.

\[
\gamma = (r_0^T)^T \begin{bmatrix} P & Q & R \end{bmatrix}
\]

//EndDo

For \(j = 0 \) to \(\left\lfloor \frac{s}{2} \right\rfloor - 1 \), Do

\[
\begin{align*}
q_{k,j} &= r_{k,j} - Aq_{k,j-1} \quad \text{for } k = 0, 1, \ldots, s \quad \text{for } j = 0, 1, \ldots, \left\lfloor \frac{s}{2} \right\rfloor - 1
\end{align*}
\]

For \(i = 0 \) to \(s - 2j + 1 \), Do

\[
\begin{align*}
e_{k,ij} &= d_{k,ij} - a_{k,ij} d_{k,ij-1} \\
\text{such that } [P, Q, R] e_{k,ij} &= A^r q_{k,j}
\end{align*}
\]

For \(i = 0 \) to \(s - 2j \), Do

\[
\begin{align*}
\omega_{k,ij} &= \frac{c_{k,ij} - e_{k,ij} d_{k,ij-1}}{c_{k,ij+1} - e_{k,ij} d_{k,ij}} \\
\text{such that } [P, Q, R] \omega_{k,ij} &= A^r q_{k,j}
\end{align*}
\]

EndDo

EndDo

CA-BiCGStab Convergence, \(s = 32 \)

CA-BiCGStab

For \(j = 0 \) to \(\left\lfloor \frac{s}{2} \right\rfloor - 1 \), Do

\[
\begin{align*}
0_{k,j} &= \frac{c_{k,ij}}{c_{k,ij+1}} \\
r_{k,j} &= \frac{x_{k,j} + 0_{k,j} p_{k,j} + \omega_{k,j}}{\beta_{k,j} \\
p_{k,j} &= \frac{y_{k,j} + 0_{k,j} q_{k,j} + \omega_{k,j}}{\beta_{k,j}} \\
\end{align*}
\]

For \(i = 0 \) to \(s - 2j \), Do

\[
\begin{align*}
n_{k,ij} &= \frac{x_{k,ij} + 0_{k,ij} p_{k,ij} + \omega_{k,ij}}{\beta_{k,ij}} \\
q_{k,ij} &= \frac{y_{k,ij} + 0_{k,ij} q_{k,ij} + \omega_{k,ij}}{\beta_{k,ij}}
\end{align*}
\]

EndDo

EndDo
Sample Application Speedups

- Geometric Multigrid (GMG) w CA Bottom Solver
 - Compared BICGSTAB vs. CA-BICGSTAB with $s = 4$
 - Hopper at NERSC (Cray XE6), weak scaling: Up to 4096 MPI processes (24,576 cores total)

 - Speedups for miniGMG benchmark (HPGMG benchmark predecessor)
 - 4.2x in bottom solve, 2.5x overall GMG solve

 - Implemented as a solver option in BoxLib and CHOMBO AMR frameworks
 - 3D LMC (a low-mach number combustion code)
 - 2.5x in bottom solve, 1.5x overall GMG solve
 - 3D Nyx (an N-body and gas dynamics code)
 - 2x in bottom solve, 1.15x overall GMG solve

- Solve Horn-Schunck Optical Flow Equations
 - Compared CG vs. CA-CG with $s = 3$, 43% faster on NVIDIA GT 640 GPU
Tuning space for Krylov Methods

- Classifications of sparse operators for avoiding communication
 - Explicit indices or nonzero entries cause most communication, along with vectors
 - Ex: With stencils (all implicit) all communication for vectors

Indices

<table>
<thead>
<tr>
<th>Nonzero entries</th>
<th>Explicit (O(nnz))</th>
<th>Implicit (o(nnz))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations</td>
<td>CSR and variations</td>
<td>Vision, climate, AMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explicit (O(nnz))</td>
<td>Graph Laplacian</td>
<td>Stencils</td>
</tr>
<tr>
<td>[x, Ax, A^2x, ...]</td>
<td>[y, A^T y, (A^T)^2 y, ...]</td>
<td></td>
</tr>
</tbody>
</table>

- Number of columns in x
- [x, Ax, A^2x, ...] and [y, A^T y, (A^T)^2 y, ...], or [y, A^T A y, (A^T A)^2 y, ...], return all vectors or just last one
- Cotuning and/or interleaving
 - W = [x, Ax, A^2x, ...] and {TSQR(W) or W^T W or ...}
 - Ditto, but throw away W
- Preconditioned versions

Summary of Iterative Linear Algebra

- New Lower bounds, optimal algorithms, big speedups in theory and practice
- Lots of other progress, open problems
 - Many different algorithms reorganized
 - More underway, more to be done
 - Need to recognize stable variants more easily
 - Preconditioning
 - Hierarchically Semiseparable Matrices
 - Autotuning and synthesis
 - pOSKI for SpMV – available at bebop.cs.berkeley.edu
 - Different kinds of “sparse matrices”
For more details

- Bebop.cs.berkeley.edu
 - 155 page survey in Acta Numerica
- CS267 – Berkeley’s Parallel Computing Course
 - Live broadcast in Spring 2015
 - www.cs.berkeley.edu/~demmel
 - All slides, video available
 - Prerecorded version broadcast since Spring 2013
 - www.xsede.org
 - Free supercomputer accounts to do homework
 - Free autograding of homework

Reproducible Floating Point Computation

- Do you get the same answer if you run the same program twice with the same input?
 - Not even on your multicore laptop!
- Floating point addition is nonassociative, summation order not reproducible
- First release of the ReproBLAS
 - Reproducible BLAS 1, independent of data order, number of processors, data layout, reduction tree, ...
 - Sequential and distributed memory (MPI)
- bebop.cs.berkeley.edu/reproblas
Summary

Time to redesign all linear algebra, n-body,...
algorithms and software
(and compilers...)

Don’t Communic...