3.1.18) Differentiate \(y = \frac{7}{9} + \frac{x^2 + x + 1}{x^2 + 1} \)
\[
y' = \frac{(x^2+1)(2x+1)- (x^2 + x + 1)(5x^4)}{(x^2+1)^2}
\]

3.1.26) Differentiate \(y = \frac{x+2}{(x+3)(x+4)} \)
\[
y' = \frac{(x+3)(x+4)(1) - (x+2)((x+3)(1)+(1)(x+4))}{(x+3)^2(x+4)^2} = \frac{x^2 + 7x + 12 - (2x^2 + 11x + 14)}{(x+3)^2(x+4)^2} = \frac{-x^2 - 4x - 2}{(x+3)^2(x+4)^2}
\]

3.1.34) \(y = (x^2 - 1)^4(x^2 + 1)^5 \) Find the coordinates of the local maxima and minima.
First, find the derivative: \(y' = (x^2 - 1)^4 \cdot 5(x^2 + 1)^4(2x) + (x^2 + 1)^5 \cdot 4(x^2 - 1)^3(2x) \), so
\[
y' = 2x(x^2 - 1)^3(x^2 + 1)^4[5(x^2 - 1) + 4(x^2 + 1)] = 2x(x^2 - 1)^3(x^2 + 1)^4(9x^2 - 1).
\]
Clearly, \(y' = 0 \) for \(x = 0, \pm 1, \pm 1/3 \), so these are the critical points. It is clear from the graph that 0 and \(\pm 1 \) give local minima, and \(\pm 1/3 \) give local maxima. Plugging these values into the equation for \(y \), we get local minima at \((-1,0),(0,1),\) and \((1,0)\) and local maxima at \((\pm 1/3, \pm 10^5)\), or \(\approx (\pm 0.33, 1005) \).

3.1.44) \(h(x) = (\frac{f(x)}{x})^2 \) Find \(h'(x) \).
\[
h'(x) = 2(\frac{f(x)}{x})^1 \cdot \frac{x f'(x) - f(x)1}{x^2} = \frac{2xf(x)f'(x) - 2f(x)^2}{x^2}
\]

3.1.50) Let \(s(t) \) be the number of miles a car travels in \(t \) hours. Then the average velocity during the first \(t \) hours is \(\bar{v}(t) = s(t)/t \) miles per hours. Suppose the average velocity is maximized at time \(t_0 \). Show that at this time the average velocity \(\bar{v}(t_0) \) equals the instantaneous velocity \(s'(t_0) \).
\[
\bar{v}'(t) = \frac{t \bar{v}'(t)- \bar{v}(t)1}{t^2} \quad \text{and this is true for all } t, \quad \text{so } \bar{v}'(t_0) = \frac{t_0s'(t_0) - s(t_0)}{t_0^2}.
\]
Since \(\bar{v} \) is maximized at \(t_0 \), \(\bar{v}'(t_0) = 0 \), so \(t_0s'(t_0) - s(t_0) = 0 \). Thus, \(t_0s'(t_0) = s(t_0) \), \(t_0 \) s'(t_0) = s(t_0), so \(s'(t_0) = \frac{s(t_0)}{t_0} = \bar{v}(t_0) \), which is what we are trying to show.

3.1.56) Find the coordinates of the minimum point of \(y = \frac{1}{2} + \frac{x^2 - 2x + 1}{x^2 - 2x + 2} \) for \(0 \leq x \leq 2 \).
\[
y' = \frac{(x^2 - 2x + 2)(2x - 2) - (x^2 - 2x + 1)(2x - 2)}{(x^2 - 2x + 2)^2} = \frac{(2x - 2)(x^2 - 2x + 2 - 2x - 1)}{(x^2 - 2x + 2)^2} = \frac{2x - 2}{(x^2 - 2x + 2)^2}.
\]
This has critical points at 1 and when \(x^2 - 2x + 2 = 0 \), which only happens in the complex numbers. Thus, the only critical point we need to consider is \(x = 1 \). Plug in values on either side to show 1 is a minimum. \(y'(0) = -2/4 = -1/2 < 0 \), \(y'(2) = 2/4 = 1/2 > 0 \), so 1 is a minimum. Thus, the coordinate of the minimum is \((1/2, 1)\).

3.2.4) \(f(x) = \frac{x+1}{x-3}, \) \(g(x) = x + 3 \). Compute \(f(g(x)) \).
\[
f(g(x)) = \frac{x+3+1}{x+3-3} = \frac{x+4}{x}
\]

3.2.10) \(h(x) = (4x - 3)^3 + \frac{1}{4x-3} \) Find \(f(x) \) and \(g(x) \) such that \(h(x) = f(g(x)) \).
\[
f(x) = x^3 + \frac{1}{x}, \quad g(x) = 4x - 3
\]

3.2.16) Differentiate \(y = 2(2x - 1)^{5/4}(2x + 1)^{3/4} \)
\[
y' = 2(2x - 1)^{5/4} \cdot \frac{3}{4}(2x + 1)^{-1/4}(2) + 2(2x + 1)^{3/4} \cdot \frac{5}{4}(2x - 1)^{1/4}(2)
\]
\[y' = (2x - 1)^{1/4}(2x + 1)^{-1/4}(3(2x - 1) + 5(2x + 1)) = (2x - 1)^{1/4}(2x + 1)^{-1/4}(16x + 2) \]

3.2.26) \(h(x) = \sqrt{f(x^2)} \). Find \(h'(x) \)

\[h'(x) = (1/2)(f(x^2))^{-1/2}f'(x^2)(2x) = x(f(x^2))^{-1/2}f'(x^2) \]

3.2.28) Sketch the graph of \(y = 2/(1 + x^2) = 2(1 + x^2)^{-1} \).

\[y' = 2(-1)(1 + x^2)^{-2}(2x) = -4x/(1 + x^2)^2, \) so \(y \) has a critical point at \(x = 0 \). It is clear that \(y' \) is positive to the left of 0 and negative to the right, so \(y \) in increasing on \((-\infty, 0)\) and decreasing on \((0, \infty)\) and has a local maximum at 0 with a value of 2. This is also a global max, since \(y \) is only increasing to the left and only decreasing to the right.

\[y'' = (1+x^2)^2(-4)-(4x)(2)(1+x^2)(2x) = (1+x^2)^{-2}(4x^2+16x^2) = -4x^2(1+x^2)^{-2}. \) This is 0 when \(12x^2 = 4 \), i.e. when \(x = \pm \sqrt{1/3} \). We see that for \(x = 0 \) \(y'' \) is negative, but it is positive for \(x = \pm 1 \), so \(x = \pm \sqrt{1/3} \) are points of inflection, and \(y \) is concave up on \((-\infty, -\sqrt{1/3}), (\sqrt{1/3}, \infty) \) and concave down on \((-\sqrt{1/3}, \sqrt{1/3}) \).

The \(y \)-intercept is (0, 2), and \(y \) has no \(x \)-intercepts, since it can never equal 0. It is defined everywhere, and has asymptotes at \(y = 0 \), since \(\lim_{x \to \infty} y = 0 \) and \(\lim_{x \to -\infty} y = 0 \)

3.2.34) \(f(x) = \frac{4}{x} + x^2, g(x) = 1-x^4 \). Find \(\frac{d}{dx} f(g(x)) \).

\[\frac{d}{dx} f(g(x)) = \frac{d}{dx} \left(\frac{4}{x} + (1-x^4)^2 \right) = \frac{-4x}{x^2} + 2(1-x^4)(-4x^3) = \frac{16x^3}{(1-x^4)^2} - (1-x^4)(8x^3) \]

3.2.40) \(y = \frac{u^2+2u}{u+1}, u = x+1 \). Find \(\frac{dy}{dx} \).

\[\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = \frac{(u+1)(2u+2)-(u^2+2u)(1)}{(u+1)^2} \times [x(1)+(1)(x+1)] = \frac{2u^2+4u+2-u^2-2u}{(u+1)^2}(2x+1) = \frac{u^2+2u+2}{(u+1)^2} (2x+1) = \frac{2x+1}{(2x+1)(x^2+1)} \]

3.2.52) Suppose \(Q, x, \) and \(y \) are variables, where \(Q \) is a function of \(x \) and \(x \) is a function of \(y \). a.) Write the derivative symbols for:

the rate of change of \(x \) with respect to \(y \) : \(\frac{dx}{dy} \)
the rate of change of \(Q \) with respect to \(y \) : \(\frac{dQ}{dy} \)
the rate of change of \(Q \) with respect to \(x \) : \(\frac{dQ}{dx} \)
b.) Write the chain rule for \(\frac{dQ}{dy} \): \(\frac{dQ}{dy} = \frac{dQ}{dx} \frac{dx}{dy} \)

3.2.56) A manufacturer of microcomputers estimates that \(t \) months from now it will sell \(x \) thousand units of its main line of microcomputers per month, where \(x = .05t^2 + 2t + 5 \).

Because of economies of scale, the profit \(P \) from manufacturing and selling \(x \) thousand units is estimated to be \(P = .001x^2 + .1x -.25 \) million dollars. Calculate the rate at which the profit will be increasing 5 months from now.

We need \(\frac{dP}{dt}(5) \).

\[\frac{dP}{dt} = \frac{dP}{dx} \frac{dx}{dt} = (.002x + .1)(1t + 2) = (.002(.05t^2 + 2t + 5) + .)(1t + 2) = (.0001t^2 + .004t + .1)(1t + 2) = .00001t^3 + .0006t^2 + .019t + .22 \]

Thus, we get \(\frac{dP}{dt}(5) = .33125 \), by plugging \(t = 5 \).

3.3.16) Find \(\frac{dy}{dx} \) if \(x^2 + 4xy + 4y = 1 \)
Taking \(\frac{dy}{dx} \) of both sides, we get \(2x + 4x \frac{dy}{dx} + 4y + 4 \frac{dy}{dx} = 0 \). So \(\frac{dy}{dx}(4x + 4) = -2x - 4y \), so \(\frac{dy}{dx} = \frac{-2x - 4y}{4x + 4} \).

3.3.18) \(x^3y + xy^3 = 4 \)

Taking \(\frac{d}{dx} \) of both sides, we get \(x^3 \frac{dy}{dx} + 3x^2y + x(3y^2) \frac{dy}{dx} + (1)y^3 = 0 \). So \(\frac{dy}{dx}(x^3 + 3xy^2) = -3x^2y - y^3 \), so \(\frac{dy}{dx} = \frac{-3x^2y - y^3}{x^3 + 3xy^2} \).

3.3.28) The graph of \(x^4 + 2x^2y^2 + y^4 = 9x^2 - 9y^2 \) is a lemniscate.

a.) Find \(\frac{dy}{dx} \) by implicit differentiation

Taking \(\frac{d}{dx} \) of both sides, we get \(4x^3 + 2x^2(2y) \frac{dy}{dx} + 4x(y^2) + 4y^3 \frac{dy}{dx} = 18x - 18y \frac{dy}{dx} \). So \(\frac{dy}{dx}(4x^2y + 4y^3 + 18y) = 18x - 4x^3 - 4xy^2 \), so \(\frac{dy}{dx} = \frac{18x - 4x^3 - 4xy^2}{4x^2y + 4y^3 + 18y} \).

b.) Find the slope of the tangent line to the lemniscate at \((\sqrt{5}, -1)\)

slope = \(\frac{dy}{dx} \bigg|_{(\sqrt{5}, -1)} = \frac{18\sqrt{5} - 4\sqrt{5} - 4\sqrt{5}(1)^2}{4\sqrt{5} - (-1) + 4(-1)^3 + 18(-1)} = \frac{18\sqrt{5} - 20\sqrt{5} - 4\sqrt{5}}{-20 - 4 - 18} = \frac{-6\sqrt{5}}{-42} = \frac{\sqrt{5}}{7} \)

3.3.30) Suppose that \(x \) and \(y \) represent the amounts of two basic inputs for a production process and \(10x^{1/2}y^{1/2} = 600 \). Find \(\frac{dy}{dx} \) when \(x = 50, y = 72 \)

We have \(x^{1/2}y^{1/2} = 60 \), so \(x^{1/2}(1/2)y^{-1/2} \frac{dy}{dx} + (1/2)x^{-1/2}y^{1/2} = 0 \). Then \(\frac{dy}{dx} = \frac{-x^{-1/2}y^{1/2}}{x^{1/2}y^{1/2}} = \frac{-y}{x} \).

So when \(x = 50, y = 72 \) \(\frac{dy}{dx} = \frac{-72}{50} = \frac{-36}{25} \).

3.3.36) Determine \(\frac{dy}{dt} \) if \(x^2y^2 = 2y^3 + 1 \)

We take \(\frac{d}{dt} \) of both sides to get \(2x \frac{dx}{dt}y^2 + x^2(2y) \frac{dy}{dt} = 6y^2 \frac{dy}{dt} \). So \(2xy^2 \frac{dx}{dt} = \frac{dy}{dt}(6y^2 - 2x^2y) \), and so \(\frac{dy}{dt} = \frac{2xy^2 \frac{dx}{dt}}{6y^2 - 2x^2y} \).

3.3.46) An airplane flying 390 feet per second at an altitude of 5000 feet flew directly over an observer.

a.) Find an equation relating \(x \) and \(y \)

5000^2 + x^2 = y^2

b.) Find the value of \(x \) when \(y \) is 13,000

\(x = \sqrt{13000^2 - 5000^2} = \sqrt{169000000 - 25000000} = \sqrt{144000000} = 12000 \), where we take the positive square root because we want a positive distance
c.) How fast is the distance from the observer to the airplane changing at the time when the airplane is 13,000 feet for the observer? What is \(\frac{dy}{dt} \) when \(\frac{dx}{dt} = 390 \) and \(y = 13000 \)?

From a.) we get \(2x \frac{dx}{dt} = 2y \frac{dy}{dt} \). Plugging in \(y = 13000, x = 12000 \) and \(\frac{dx}{dt} = 390 \), we get \(9360000 = 26000 \frac{dy}{dt} \), so \(\frac{dy}{dt} = 360 \) feet per second.

Supplementary Exercises: 26) \(h(x) = g(f(x)) \) Determine \(h(1) \) and \(h'(1) \).

\(h(1) = g(f(1)) \). Since \(f(1) = 3 \) and \(g(3) = 1 \), \(h(1) = 1 \). By the chain rule, \(h'(x) = g'(f(x))f'(x) \), so \(h'(1) = g'(f(1))f'(1) \). From the graphs, we see \(f(1) = 3, f'(1) = 1/2 \), and \(g'(3) = -1/2 \), so \(h'(1) = -1/2 * 1/2 = -1/4 \).

42a.) Find \(\frac{dy}{dx} \) if \(x^3 + y^3 = 9xy \)
We get \(3x^2 + 3y^2 \frac{dy}{dx} = 9x \frac{dy}{dx} + 9y \) by taking \(\frac{d}{dx} \) of both sides. So \(\frac{dy}{dx} (3y^2 - 9x) = 9y - 3x^2 \), and so \(\frac{dy}{dx} = \frac{9y - 3x^2}{3y^2 - 9x} \).

b.) Find the slope of the curve at \((2, 4)\)

\[
\text{slope} = \left. \frac{dy}{dx} \right|_{(2, 4)} = \frac{9(4) - 3(2)}{3(4)^2 - 9(2)} = \frac{36 - 12}{48 - 18} = \frac{24}{30} = \frac{4}{5}
\]

50) An offshore oil well is leaking oil onto the ocean surface, forming a circular oil slick about .005 meter thick. If the radius of the slick is \(r \) meters, then the volume of the oil spilled is \(V = .005\pi r^2 \) cubic meters. Suppose that the oil is leaking at a constant rate of 20 cubic meters per hour, so that \(\frac{dV}{dt} = 20 \). Find the rate at which the radius of the oil slick is increasing, at a time when the radius is 50 meters.

\(V = .005\pi r^2 \) gives us that \(\frac{dV}{dt} = .005\pi 2r \frac{dr}{dt} \). Plugging in \(\frac{dV}{dt} = 20 \) and \(r = 50 \), we get \(20 = .005\pi 100 \frac{dr}{dt} \), so \(\frac{dr}{dt} = 40/\pi \) meters per second.