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Overview

• Chip multiprocessor (CMP) systems become de factor HPC 
building blocks
– better trade-offs between performance (parallelism) and energy 

efficiency
– diverse CMP architectural designs: multicore, multithreading, …

• Testing machines in this study: all programmable in shared 
address space
– Intel Clovertown (homogeneous multicore)
– Sun VictoriaFalls (hardware-threaded multicore, NUMA)
– IBM Power 5 (conventional SMP node)

• Questions
– programmability: Pthread, MPI
– performance of existing code
– where and how to improve performance

• Findings may be applicable to other algorithms, such as ILU



Architectural summary
System Intel 

Clovertown
Sun 
VictoriaFalls

IBM
Power 5 (575)

Core type superscalar (4) multithreaded (8) superscalar (4)
Clock  (GHz) 2.3 1.4 1.9
L1 DCache 32 KB 8 KB 32 KB

# sockets 2 4 8
# cores/socket 4 8

(256 threads)
1

L2 cache 4 MB/2-cores
(16 MB)

4 MB/socket
(16 MB)

1.92 MB/core
(32 MB L3$/node)

DP Gflops 74.7 44.8 60.8
DRAM GB/s (read) 21.3 84 200

Byte-to-flop ratio 0.29 1.88 3.29
Socket power 
(Watts)

160
(max)

84
(max)

500
(measured)

3Sources:  John Shalf, Sam Williams



Architectural diagram
• Intel Colvertown

– 2 sockets, 8 cores

• Sun VictoriaFalls: Quad-chip Niagara2  (NUMA)
– 32 cores
– 256 threads 
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Single-core, single threaded BLAS

• Clovertown
– Intel MKL

5

• VictoriaFalls
– Sun Performance Library
Can’t use 8 hw threads !!
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Sparse GE (LU factorization)

for i = 1 to n
for j = i+1 to n

A(j,i) = A(j,i) / A(i,i)
for  k = i+1 to n  s.t.  A(i,k) != 0

for j = i+1 to n  s.t.  A(j,i) != 0 
A(j,k) = A(j,k) - A(j,i) * A(i,k)

Scalar version : 3 nested loop

1
2

3
4

6
7

5L

U

Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems
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Supernode: dense blocks in {L\U}

• Good for high performance
– Enable use of Level 3 BLAS
– Reduce inefficient indirect addressing (scatter/gather)
– Reduce time of the graph algorithms by traversing a coarser 

graph
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Major stages
1. Order equations & variables to preserve sparsity.

• NP-hard,  use heuristics
2. Symbolic factorization.

• Identify supernodes, set up data structures and allocate 
memory for L & U.

3. Numerical factorization – usually dominates total time.
• How to pivot?

4. Triangular solutions – usually less than 5% total time.

SuperLU_MT
1. Sparsity ordering
2. Factorization

• Partial pivoting
• Symbolic fact.
• Num.  fact. (BLAS 2.5)

3. Solve

SuperLU_DIST
1. Static pivoting
2. Sparsity ordering
3. Symbolic fact.
4. Numerical fact. (BLAS 3)
5. Solve
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SuperLU_MT  [Li/Demmel/Gilbert]

• Pthread or OpenMP
• Left looking – relatively more READs than WRITEs
• Use shared task queue to schedule ready columns in the 

elimination tree (bottom up)
• Over 12x speedup on conventional 16-CPU SMPs (1999)

P1 P2

DONE NOT
TOUCHED

BUSY

U

L

A



• MPI
• Right looking -- relatively more WRITEs than READs
• 2D block cyclic layout
• One step look-ahead to overlap comm. & comp.
• Scales to 1000s processors
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SuperLU_DIST  [Li/Demmel/Grigori]
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PAPI : load/store counters

• PAPI:  Performance Application Programming Interface
– Portable interface to access hardware performance counters

• right-looking (slu_dist) has over 30x more load or store instructions
• STORE is costly:  cache coherence,  lower bandwidth
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Clovertown – SuperLU_DIST

• MPICH can be configured one of two modes:
– “ch_shmem” within socket
– “ch_p4” across sockets

• MPICH needs hybrid mode  (not yet available !!)

12



Clovertown – SuperLU_MT

• Maximum speedup 4.3, smaller than conventional SMP
• Pthreads scale better

13



VictoriaFalls – multicore + multithread
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Pthreads more robust, scale better
MPICH crashes with large tasks

mismatch between coarse and      
fine grain models

SuperLU_MT SuperLU_DIST
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Triangular solution

• PAPI counters of flops versus load instructions

16

Flops-to-load ratio



• Clovertown:  8 cores
• IBM Power5: 8 cpus/node

Triangular solution
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Time of MPI_Reduce with 1, 2, 4, 8 tasks:  0.09,  0.50,  1.28,  2.52
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Final remarks

• Results are preliminary, findings may be applicable to other 
algorithms, such as ILU preconditioner
– right-looking (maybe multifrontal) incurs more memory traffic

• Hybrid algorithm, hybrid programming will be beneficial 
– left-looking + right-looking
– threading + MPI

require significant code rewriting

• Need good runtime profiling tools to study multicore scaling
– how to calibrate memory and other contentions in the system?



Test matrices

apps dim nnz(A) SLU_MT
Fill

SLU_DIST
Fill

Avg.
S-node

g7jac200 Economic
model

59,310 0.7 M 33.7 M 33.7 M 1.9

stomach 3D finite 
diff.

213,360 3.0 M 136.8 M 137.4 M 4.0

torso1 3D finite 
diff.

116,158 8.5 M 26.9 M 27.0 M 4.0

twotone Nonlinear 
analog 
circuit

120,750 1.2 M 11.4 M 11.4 M 2.3
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SLU_MT “Symmetric Mode”
ordering on A+A’
pivot on main diagonal
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