
Evaluation of sparse LU factorization and triangular
solution on multicore architectures

X. Sherry Li
Lawrence Berkeley National Laboratory

ParLab, April 29, 2008

Acknowledgement: John Shalf, LBNL
Rich Vuduc , Georgia Tech
Sam Williams, UC Berkeley

2

Overview

• Chip multiprocessor (CMP) systems become de factor HPC
building blocks
– better trade-offs between performance (parallelism) and energy

efficiency
– diverse CMP architectural designs: multicore, multithreading, …

• Testing machines in this study: all programmable in shared
address space
– Intel Clovertown (homogeneous multicore)
– Sun VictoriaFalls (hardware-threaded multicore, NUMA)
– IBM Power 5 (conventional SMP node)

• Questions
– programmability: Pthread, MPI
– performance of existing code
– where and how to improve performance

• Findings may be applicable to other algorithms, such as ILU

Architectural summary
System Intel

Clovertown
Sun
VictoriaFalls

IBM
Power 5 (575)

Core type superscalar (4) multithreaded (8) superscalar (4)
Clock (GHz) 2.3 1.4 1.9
L1 DCache 32 KB 8 KB 32 KB

sockets 2 4 8
cores/socket 4 8

(256 threads)
1

L2 cache 4 MB/2-cores
(16 MB)

4 MB/socket
(16 MB)

1.92 MB/core
(32 MB L3$/node)

DP Gflops 74.7 44.8 60.8
DRAM GB/s (read) 21.3 84 200

Byte-to-flop ratio 0.29 1.88 3.29
Socket power
(Watts)

160
(max)

84
(max)

500
(measured)

3Sources: John Shalf, Sam Williams

Architectural diagram
• Intel Colvertown

– 2 sockets, 8 cores

• Sun VictoriaFalls: Quad-chip Niagara2 (NUMA)
– 32 cores
– 256 threads

Xeon Xeon

4MB L2

Xeon Xeon

4MB L2

FBS (Front Side Bus)

Xeon Xeon

4MB L2

Xeon Xeon

4MB L2

FBS (Front Side Bus)

Blackford Interface

DRAM
read: 21.3 GB/s write: 10.6 GB/sWrite bandwidth is half of Read

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

cCore-cache crossbar

4B L2

FBDIMMs
DRAM

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

cCore-cache crossbar

4B L2

FBDIMMs
DRAM

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

cCore-cache crossbar

4B L2

FBDIMMs
DRAM

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

M
T S

P
A

R
C

v9
M

T S
P

A
R

C
v9

cCore-cache crossbar

4B L2

FBDIMMs
DRAM

External Coherent Hubs

21.3 GB/s42.7 GB/s

Single-core, single threaded BLAS

• Clovertown
– Intel MKL

5

• VictoriaFalls
– Sun Performance Library
Can’t use 8 hw threads !!

6

Sparse GE (LU factorization)

for i = 1 to n
for j = i+1 to n

A(j,i) = A(j,i) / A(i,i)
for k = i+1 to n s.t. A(i,k) != 0

for j = i+1 to n s.t. A(j,i) != 0
A(j,k) = A(j,k) - A(j,i) * A(i,k)

Scalar version : 3 nested loop

1
2

3
4

6
7

5L

U

Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems

7

Supernode: dense blocks in {L\U}

• Good for high performance
– Enable use of Level 3 BLAS
– Reduce inefficient indirect addressing (scatter/gather)
– Reduce time of the graph algorithms by traversing a coarser

graph

8

Major stages
1. Order equations & variables to preserve sparsity.

• NP-hard, use heuristics
2. Symbolic factorization.

• Identify supernodes, set up data structures and allocate
memory for L & U.

3. Numerical factorization – usually dominates total time.
• How to pivot?

4. Triangular solutions – usually less than 5% total time.

SuperLU_MT
1. Sparsity ordering
2. Factorization

• Partial pivoting
• Symbolic fact.
• Num. fact. (BLAS 2.5)

3. Solve

SuperLU_DIST
1. Static pivoting
2. Sparsity ordering
3. Symbolic fact.
4. Numerical fact. (BLAS 3)
5. Solve

9

SuperLU_MT [Li/Demmel/Gilbert]

• Pthread or OpenMP
• Left looking – relatively more READs than WRITEs
• Use shared task queue to schedule ready columns in the

elimination tree (bottom up)
• Over 12x speedup on conventional 16-CPU SMPs (1999)

P1 P2

DONE NOT
TOUCHED

BUSY

U

L

A

• MPI
• Right looking -- relatively more WRITEs than READs
• 2D block cyclic layout
• One step look-ahead to overlap comm. & comp.
• Scales to 1000s processors

10

SuperLU_DIST [Li/Demmel/Grigori]

0 2
3 4

1
5

Process mesh
2

3 4
1

5
0 2

3 4
1

5
0

2
3 4

1
5

0

2
3 4

1
5

0

210

2
3 4

1
5

0

2

3 4

1

5

0

210

3
0

3
0

3

0

0

Matrix

ACTIVE

PAPI : load/store counters

• PAPI: Performance Application Programming Interface
– Portable interface to access hardware performance counters

• right-looking (slu_dist) has over 30x more load or store instructions
• STORE is costly: cache coherence, lower bandwidth

11

Clovertown – SuperLU_DIST

• MPICH can be configured one of two modes:
– “ch_shmem” within socket
– “ch_p4” across sockets

• MPICH needs hybrid mode (not yet available !!)

12

Clovertown – SuperLU_MT

• Maximum speedup 4.3, smaller than conventional SMP
• Pthreads scale better

13

VictoriaFalls – multicore + multithread

14

Pthreads more robust, scale better
MPICH crashes with large tasks

mismatch between coarse and
fine grain models

SuperLU_MT SuperLU_DIST

1
00

0

0

1

1

1 22

2 0

3

33

3

3

33 4

44

4

4 5 5

5

5

0
4

0
3

1

5
0

4

1

+

0 2
3 4

1
5

Process mesh

2

3 4

• Higher level of dependency
• Lower arithmetic intensity (flops per byte of DRAM access or

communication)

Triangular solution (SuperLU_DIST)

15

ii

i

j
jiji

i L

xLb
x

∑
−

=

⋅−
=

1

1

Triangular solution

• PAPI counters of flops versus load instructions

16

Flops-to-load ratio

• Clovertown: 8 cores
• IBM Power5: 8 cpus/node

Triangular solution

17

Time of MPI_Reduce with 1, 2, 4, 8 tasks: 0.09, 0.50, 1.28, 2.52

18

Final remarks

• Results are preliminary, findings may be applicable to other
algorithms, such as ILU preconditioner
– right-looking (maybe multifrontal) incurs more memory traffic

• Hybrid algorithm, hybrid programming will be beneficial
– left-looking + right-looking
– threading + MPI

require significant code rewriting

• Need good runtime profiling tools to study multicore scaling
– how to calibrate memory and other contentions in the system?

Test matrices

apps dim nnz(A) SLU_MT
Fill

SLU_DIST
Fill

Avg.
S-node

g7jac200 Economic
model

59,310 0.7 M 33.7 M 33.7 M 1.9

stomach 3D finite
diff.

213,360 3.0 M 136.8 M 137.4 M 4.0

torso1 3D finite
diff.

116,158 8.5 M 26.9 M 27.0 M 4.0

twotone Nonlinear
analog
circuit

120,750 1.2 M 11.4 M 11.4 M 2.3

19

SLU_MT “Symmetric Mode”
ordering on A+A’
pivot on main diagonal

	 Evaluation of sparse LU factorization and triangular solution on multicore architectures
	Overview
	Architectural summary
	Architectural diagram
	Single-core, single threaded BLAS
	Sparse GE (LU factorization)
	Supernode: dense blocks in {L\U}
	Major stages
	SuperLU_MT [Li/Demmel/Gilbert]
	SuperLU_DIST [Li/Demmel/Grigori]
	PAPI : load/store counters
	Clovertown – SuperLU_DIST
	Clovertown – SuperLU_MT
	VictoriaFalls – multicore + multithread
	Triangular solution (SuperLU_DIST)
	Triangular solution
	Triangular solution
	Final remarks
	Test matrices

