
The Complexity of
Accurate Floating Point Computation

and Symbolic Computing

or

Can we do Numerical Linear Algebra
In Polynomial Time?

James Demmel

Mathematics and Computer Science

UC Berkeley

Joint work with

Ben Diament, W. Kahan, Plamen Koev

Ming Gu, Stan Eisenstat, Ivan Slapničar,

Kresimir Veselić, Zlatko Drmač

Supported by NSF and DOE

Goals

• Def: Accurate floating point (FP) computation means

with guaranteed relative error < 1

– 10−2 ≡ 2 digits, 10−16 ≡ 16 digits, ...

– zero must be exact

• Def: Efficient computation of an expression means in

time poly(size of the expression, size of the input)

• Def: CAE means “compute accurately and efficiently”

• Goal: Understand cost of accurate FP computation

– What FP expressions can we CAE?

– Are there FP expressions that we cannot CAE?

– For what structured matrices

(i.e. with FP expressions as entries)

are there matrix computations that we can CAE?

∗ LU, QR, Inv, Pinv, SVD, Eig, ...

Structure of Results

• Classes of FP expressions/matrices that we can CAE

depends strongly on

– Set of Numbers

1. Positive real numbers

2. Real numbers

3. Complex numbers

– Model of FP Arithmetic

1. Traditional (“1 + δ”) Model:

fl(a⊗ b) = (a⊗ b)(1 + δ), |δ| tiny
2. Bit model (IEEE) f · 2e, with “large exponents”:

“natural” model for algorithms, analysis

3. Bit model (IEEE) f · 2e, with “small exponents”:

integers in disguise, well understood

4. Blum/Shub/Smale (BSS) model (not today)

• Classes described by factorizability properties of

expressions/minors of matrices

• New algorithms can be exponentially faster than

conventional algorithms that just use enough precision

• Cost(CAE in Bit model with large exponents) ≥
Cost(“symbolic computing“)

• There are FP expressions that we cannot CAE

Example: 100 by 100 Hilbert Matrix
H(i, j) = 1/(i + j − 1)

• Eigenvalues range from 1 down to 10−150

• Old algorithm, New Algorithm, both in 16 digits

0 10 20 30 40 50 60 70 80 90 100

10
−140

10
−120

10
−100

10
−80

10
−60

10
−40

10
−20

10
0

Singular values of Hilb(100), blue = accurate, red = usual

• D = log(λ1/λn) = log cond(A) (here D = 150 digits)

• “Cost” of Old algorithm = O(n3D2)

• “Cost” of New algorithm = O(n3)

• New algorithm cost independent of condition number

Why bother computing tiny eigenvalues
accurately?

• Aren’t they too ill-conditioned?

• NO - they are determined accurately by the data

– Hilbert: H(i, j) = 1/(i + j − 1)

– Cauchy: C(i, j) = 1/(xi + yj)

– Data are xi and yj, not 1/(xi + yj)

– Changing xi or yj in d-th digit changes each

eigenvalue in d-th digit

(for Hilbert, analogous for Cauchy)

– Hilbert matrix is nearly perfectly conditioned!

– Algorithm works for Cauchy matrices

∗ complex numbers

∗ 1 + δ model

• In some applications, tiny eigenvalues matter most

– Quantum mechanics: want lowest energy levels

– Elasticity: want lowest frequencies of vibration

– Large eigenvalues are artifacts of discretization

– Computational geometry: what is sign(det(A))?

• Good to get accurate results if they cost about as much

as inaccurate results

Central Role of Minors

• Being able to CAE det(A) is necessary for CAE

– A = LU with pivoting

– A = QR

– Eigenvalues λi of A

– Related factorizations ...

∗ Proof: det(A) = ± ∏
i Uii = ± ∏

i Rii =
∏
i λi = · · ·

• Being able to CAE all minors of A is sufficient for CAE

– A−1

∗ Proof: Cramer’s rule

∗ Only need n2 + 1 minors

– A = LU or A = LDU with pivoting

∗ Proof: Each entry of L, D, U a quotient of minors

∗ Only need O(n2) or O(n3) minors

– Singular values

∗ Proof: new SVD algorithm for A = LDU with

pivoting

• Similar result for QR, pseudoinverse via



I A

AT 0


, etc.

• Examine which expressions (minors) we can CAE

How do we CAE A = L ·D · U
for a Hilbert (or Cauchy) Matrix?

• How can we lose accuracy in computing?

– 1 + δ model: fl(a⊗ b) = (a⊗ b)(1 + δ), |δ| ≤ ε 	 1

– OK to multiply, divide, add positive numbers

– OK to subtract exact numbers (initial data)

– Cancellation when subtracting approximate results

dangerous:

.12345xxx

- .12345yyy

.00000zzz

• Cauchy: C(i, j) = 1/(xi + yj)

• Fact 1: det(C) =
∏
i<j(xj − xi)(yj − yi)/

∏
i,j(xi + yj)

– No bad cancellation ⇒ good to most digits

• Fact 2 : Each minor of C also Cauchy

• Fact 3 : Each entry of L, D, U is a (quotient of) minors

• Change inner loop of Gaussian Elimination from

C(i, j) := C(i, j)− C(i, k) ∗ C(k, j)
to

C(i, j) := C(i, j) ∗ (xi − xk) ∗ (yj − yk)/(xk + yj)/(xi + yk)

• Each entry of L, D, U accurate to most digits!

SVD Algorithm

A = XDY T

A = U ΣV

A

T

X, Y full column rank and "well-conditioned"
D diagonal

Phase 1: compute Rank Revealing Decomp (RRD)

Phase 2: compute SVD of an RRD

• Examples of RRDs:

– A = UΣV T , SVD itself

– A = QDR, QR decomposition with pivoting

– A = LDU , Gaussian Elimination with “complete”

pivoting (GECP)

• Phase 1: GECP via (implicitly) computing accurate

minors of A

– Depends on structure of A (e.g. Cauchy)

• Phase 2: Works for any RRD in O(n3)

– Independent of structure of A

Accurate SVD of A = XDY T

• SVD is A = UΣV T

• Many accurate algorithms, here is simplest:

1. Compute SVD of DY T = U1Σ1V
T
1

using one-sided Jacobi

2. Multipy W = XU1

3. Compute SVD of WΣ1 = UΣV T
2

using one-sided Jacobi

4. Multiply V = V1V2

• To guarantee efficiency, find eigenvalues of



0 A

AT 0


 =

1

21/2
·



L L

UT −UT


 ·



D 0

0 −D

 ·



LT U

LT −U

 · 1

21/2

≡ Z · D̂ · ZT

by performing bisection on λD̂ − Z−1Z−T

Why roundoff is harmless

• 1 + δ model: fl(a⊗ b) = (a⊗ b)(1 + δ)

• We want A = UΣV T ,

U = [u1, ..., un], Σ = diag(σ1, ..., σn)

• But we compute Ā = Ū Σ̄V̄ T ,

Ū = [ū1, ..., ūn], Σ̄ = diag(σ̄1, ..., σ̄n)

Absolute Relative

(additive) vs. (multiplicative)

Perturbations Perturbations

Ā = A + σmax · E Ā = (I + E)A

‖E‖ 	 1

|σi − σ̄i| ≤ ‖E‖ · σmax |σi − σ̄i| ≤ ‖E‖ · σi

Conventional error bound Our error bound

Sturm-Liouville Equations

• −(p(x)y′)′ + q(x)y = λr(x)y on [0,1], p, q, r > 0

• Discretize: second centered differences on uniform grid

– Get Tx = λDrx

– Dr = diag(ri)

– T = tridiag(−pi−.5 , pi−.5 + pi+.5 + h2qi , pi+.5)

– Don’t even form T !

• Rewrite Tx = λDrx as GGTy = λy (SVD of G)

– Factor T = LDpL
T + h2Dq where

Dp = diag(p1.5, ..., pn−.5) , Dq = diag(q1, ..., qn)

L =




1

−1 . . .
. . . 1

−1




T = U ·K2 ·UT where U = [L, I] and K = diag(Dp, h
2Dq)

– G = D−1/2
r UK

• Thm: (Poincaré) U is totally unimodular,

i.e. all minors ∈ {+1,−1, 0}
• Theorem: High relative accuracy from GE by changing

G(j, k) := G(j, k)−G(j, i) ∗G(i, k)
to

if G(j, k), G(j, i), G(i, k) all �= 0 then G(j, k) := 0

else G(j, k) := G(j, k)−G(j, i) ∗G(i, k)

Other examples in 1 + δ model

• Sturm-Liouville trick extends to elliptic PDE

– Second centered differences on uniform square meshes

– Irregular boundaries ok

– Still get SVD of

G = diagonal · totally unimodular · diagonal
– Cost = O(n3)

• Sparse matrices with

– particular sparsity patterns, Cost = O(n3)

– particular sparsity and sign patterns, Cost = O(n4)

• Real Vandermonde, other unit displacement rank

– Reduce to Cauchy

– Cost = O(n3)

• Totally positive matrices (but cost not always poly)

– More later ...

• What do these matrices have in common?

1 + δ Model with Complex Numbers -
What we CAN do

• Def: 1 + δ allowable expressions may only

– Multiply and divide

– Add or subtract initial data

– Proof: All 1 + δ factors can be factored out

• Def: A family An(x) of n-by-n rational matrices is

fully polyfactorable if each minor r(x) is a

1 + δ allowable expression of at most poly(n) factors

xi and (xj ± xk)

• Thm: Suppose An(x) is fully polyfactorable.

Then in the 1 + δ model we can CAE

LU with pivoting, A−1, singular values.

• Enough for all examples so far (Cauchy, real Vander-

monde, Sturm-Liouville, ...)

• Common conditioning analysis

– Relative uncertainty ε in input only magnified by

computing xi ± xj, yielding ε(|xi| + |xj|)/|xi ± xj|
– Condition number is largest (|xi| + |xj|)/|xi ± xj|
– Hilbert matrix very well conditioned

1 + δ Model -
What we CANNOT do

• Thm: Can’t compute x + y + z accurately in O(1) time

– Assume only ±, deterministic rounding,

exact compare, branch

– Without branches, show s = x+y+z+x·fx+y ·fy+z ·fz
where fa a polynomial in rounding errors δis

– So if x + y + z = 0, need 0 = x · fx + y · fy + z · fz
– Show (x, y, z) cannot be orthogonal to (fx, fy, fz) for

all independent choices of x, y, z, δi’s,

– Reduce case with branches to case without

• Will see x + y + z is easy in bit model...

Adding Sign Restrictions to 1 + δ Model

• Consider real numbers with fixed signs

– Fixed signs ⇒ can add x + y + z accurately if all

positive

– Real ⇒ can compute x2 + y2 accurately

• New classes of matrices

• Total Sign Compound Matrices (Brualdi and Shader)

– each matrix entry +xij, −xij or 0 (all xij ≥ 0)

– each minor a sum of like-signed terms or zero

• Totally Positive Matrices

– Each minor nonnegative

– Many examples depending rationally on positive pa-

rameters (Karlin)

– Structure theorems (Brenti, Aiseen, Schoenberg,

Whitney, Erdrei) show that all TP matrices can be

built from simpler ones via matmul, inversion, Schur

complementation, subsetting

=⇒ Can compute any minor accurately in 1+δ model

– Possibly expensive!

– Concentrate on CAE TP Generalized Vandermonde

matrices

Facts about
TP Generalized Vandermonde Matrices

• TP Vandermonde Matrix:

V =




1 x1 . . . xn−1
1

1 x2 . . . xn−1
2

. . .

1 xn . . . xn−1
n




,

where x1 > x2 > · · · > xn > 0.

• TP Generalized Vandermonde Matrix:

Gλ =




xλ1
1 x1+λ2

1 . . . xn−1+λn
1

xλ1
2 x1+λ2

2 . . . xn−1+λn
2

. . .

xλ1
n x1+λ2

n . . . xn−1+λn
n




,

where

– x1 > x2 > · · · > xn > 0

– λn ≥ λn−1 ≥ · · · ≥ λ0

• Def: λ = (λn, λn−1, ..., λ0) is partition of |λ| = λn + · · · + λ0

• Def: Young Diagrams ≡ partitions:

λ = (4, 2, 1) =

• Def: Schur Function sλ(x1, . . . , xn) = det(Gλ)/ det(V).

• Thm: sλ is a polynomial with positive integer

coefficients depending only on λ (MacDonald)

More facts about
TP Generalized Vandermonde Matrices

• Recall: det(G) = det(V) · sλ(x1, ..., xn)

• Example:

det







1 x2
1 x4

1

1 x2
2 x4

2

1 x2
3 x4

3






=

= det







1 x1 x2
1

1 x2 x2
2

1 x3 x2
3






·(2x1x2x3+x

2
1x2+x1x

2
2+x

2
1x3+x1x

2
3+x

2
2x3+x2x

2
3)

• det(V) =
∏
i>j(xi − xj) is CAE

• sλ computable accurately (xi > 0), question is cost.

• Theorem:

sλ(x1, ..., xn, y1, ..., ym) =
∑

µ<λ
sµ(x1, ..., xn)sλ/µ(y1, ..., ym)

Allows recursive computation and Divide-and-Conquer

approach.

• Some sλ’s are CAE:

λ = (1, 1, 1, ..., 1) = and λ = (m, 1, 1, ..., 1) =

Type of Any GEPP / Bidiag

Matrix det(A) A−1 minor GENP Decomp GECP SVD

Cauchy O(n2) O(n2) O(n2) O(n3) O(n2) O(n3) O(n3)

Vandermonde O(n2) NONE NONE NONE O(n2) NONE O(n3)

Totally

Positive (TP) O(n2) O(n3) EXP O(n3) O(n2) EXP O(n3)

Vandermonde

TP Generalized

Vandermonde, O(λ1n
2) O(λ1n

3) EXP O(λ1n
3) O(λ1n

2) EXP EXP

|λ| = λ1 +O(1)

TP Generalized

Vandermonde, f(n, λ) EXP EXP EXP EXP EXP EXP

any λ

f(n, λ) = O(n1+logλ1+logλ2+···+logλn) vs. O(n|λ|) = O(nλ1+λ2+···+λn)

(Symmetrica)

Models of FP Arithmetic

• Traditional 1 + δ model

– fl(a⊗ b) = (a⊗ b)(1 + δ)

– No over/underflow

– |δ| ≤ ε < 1, otherwise arbitrary

– Enough for many examples, but limited

• Bit model

– Inputs of form f · 2e, e and f integers

– Can accurately compute arbitrary rational

FP expressions

– Question is cost

• BSS model (not today)

Bit Model

• Inputs of form f · 2e, e and f integers

• size(X) = # bits used to represent X

• size(f · 2e) = #bits(f) + #bits(e)

• Can evaluate any rational expression accurately

– Convert to poly/poly, using high enough precision

– Question is cost

• Cost depends strongly on # exponent bits

– Small Exponents (SE)

∗ #bits(e) = O(log(#bits(f)))

∗ Equivalent to integer arithmetic

∗ Can CAE many problems

– Large Exponents (LE)

∗ #bits(e) and #bits(f) independent

∗ “Natural” model for algorithm design

∗ Algorithms work for any input magnitudes

∗ Like symbolic algebra, which is much harder

Differences between SE and LE bit models - 1

• Recall definitions for size of f · 2e

– Small Exponents (SE): #bits(e) = O(log(#bits(f)))

– Large Exponents (LE): #bits(e), #bits(f) indep.

• SE and “integer arithmetic” equivalent

– Represent f · 2e as integer, not pair (f, e)

– #bits(f ·2e) = #bits(f)+e ≈ #bits(f)+2#bits(e) = poly(#bits(f))

• LE and “integer arithmetic” not equivalent

– 2#bits(e) exponentially larger than #bits(e)

• # bits in FP expressions much bigger for LE than SE

– SE: size(x · y) ≤ size(x) + size(y)

– LE: size(x · y) ≤ size(x) · size(y)
size(x · y) = size((2x1 + 2x2 + 2x3) · (2y1 + 2y2 + 2y3))

= size(
3∑

i,j=1
2xi+yj)

= size(x) · size(y)
= 9 , not 6

• LE can encode symblic algebra

– 2a · 2b = 2a+b can “remember” a and b

– Some symbolic algebra problems are very hard

Differences between SE and LE bit models - 2

• Recall definitions for size of f · 2e

– Small Exponents (SE): #bits(e) = O(log(#bits(f)))

– Large Exponents (LE): #bits(e), #bits(f) indep.

• Cond(A) in LE can be exponentially larger than in SE

– SE: log cond(A) is poly(size(A))

∗ Conventional algorithms using log cond(A) bits are

polynomial

∗ Proof on next slide

– LE: log cond(A) can be exponential in size(A)

∗ cond(diag(2e, 1)) = 2e ≈ 22#bits(e)

∗ Conventional algorithms using log cond(A) bits are

not polynomial

• log log cond(A) is lower bound on complexity of any FP

algorithm

– # bits needed to print out exponent of answer

Small Exponent (SE) Bit Model

• Consider set of FP expressions of form P/Q, P and Q

polynomials

– P or Q =
∑
i αi · xei11 · · ·xeikk

– Let N bound sizes of P and Q

∗ N ≥ # xi, # nonzero αi, #bits(αi), eij

– F ≥ # bits in each xj

• Fact: # bits(P) = poly(N,F), same for # bits(Q)

– Computing P and Q costs poly(N,F)

• Consider n-by-n matrix A(x1, ..., xk) with entries Pij/Qij

– Suppose N = poly(n)

– Can compute each Pij, Qij in time poly(n, F)

– Can put over common denominator in time poly(n, F)

• Conclusion: log cond(A) = poly(n, F)

– Conventional algorithms with log cond(A) bits are ok

• Thm (Clarkson, 1992) Can CAE any minor in time

O(poly(n, F))

– Can CAE A = LU with pivoting, A−1, A+, singular

values of such matrices via minors

Large Exponent (LE) Bit Model

• Several obstacles to CAE

– Clarkson’s Thm does not work

– N ≥ size of polynomial P

– F ≥ # fraction bits in any value

– E ≥ # exponent bits in any value

– # bits (P) not poly(N,F,E)

– Example: #bits(
∏N
i=1(1 + xi)) can grow like 2N

• Thm: It is PP-Hard to compute an arbitrary bit of
∏N
i=1(1 + xi)

– Reduce permanent to finding coeff C of
∏n
i=1 uivi in

∏n
i,j=1(uivjAij − 1) where Aij = 0, 1

– Reduce C to finding a few bits of
∏n2
i=1(1 + 2ni)

• Conjecture: We cannot CAE

N∏

i=1
(1 + xi)−

N∏

j=1
(1 + yj)

• Justification: If many xi and yj the same, exponentially

many leading bits of the two products can cancel. It

seems hard to compute the first bit that does not cancel

without finding the exponentially many that do.

But isn’t det(A) =?0 in NP?

• Not necessarily in LE model

• What is witness for singularity of A? A null vector

• But null vector for a matrix with LE entries can have

exponentially many bits

– Even for a tridiagonal

Sparse Arithmetic:
Computing in Large Exponent Model

• How much work does it take to compute (B + s) − B,

where B � s?

• How many bits does it take to represent B + s?

• In usual “dense arithmetic” model, depends on relative

sizes of B and s

• Storing 2e + 1 takes e fraction bits

• In “sparse arithmetic”, B + s stored as (B, s), exponen-

tially smaller

• Widely used double-double arithmetic is special case

of sparse arithmetic (Priest, Shewchuk, Bailey, Briggs,

Bohlender, Kahan, Dekker, Pichat ...)

• Same idea very practical for higher precision

– Store number as array of “nonoverlapping” FP num-

bers

– Used in some exact inner product implementations

Which FP Expressions can we CAE
in the Large Exponent Model?

• Def: r(x) is in factored form if

r(x) =
n∏

i=1
pi(x1, ..., xk)

ei

where

pi(x1, ..., xk) =
t∑

j=1
αij · xeij11 · · ·xeijkk

and

size(r) = max(n, t, log |ei|, size(αij), size(xi), size(eijk))

• Thm (mostly Priest) We can CAE r in time poly(size(r))

– Compute pi(x1, ..., xk) exactly, with sparse arithmetic

– CAE pi(x1, ..., xk)
ei by repeated squaring

– CAE
∏n
i=1 pi(x1, ..., xk)

ei in conventional FP

• Def: A family An(x) of n-by-n rational matrices is

polyfactorable if each minor r(x) is in

factored form of size size(r) = O(poly(n))

• Thm: Suppose An(x) is polyfactorable.

Then in the Large Exponent model we can CAE

LU with pivoting, A−1, singular values.

Accurate and Efficient Matrix Computations
in Large Exponent Model

• Thm: Suppose An(x) is polyfactorable.

Then in the Large Exponent model we can CAE

LU with pivoting, A−1, singular values.

• Recall Thm: Suppose An(x) is fully polyfactorable.

Then in the 1 + δ model we can CAE

LU with pivoting, A−1, singular values.

• What matrices can we do in LE model that we could

not do in 1 + δ model?

– Complex Vandermonde matrices, not just real

– Green’s matrices

∗ inverses of tridiagonals

∗ represented as Aij = xiyj, i < j

– Any fully polyfactorable matrix where we substitute

polynomials

∗ Substitute xi = pi(z), yj = qj(z) in Cij = 1/(xi + yj)

• What matrices can we do in SE model that we could

not do in LE model?

– A lot

– Any matrix whose entries are reasonable rational

functions of data

– Matrix of n2 FP entries

Cost comparison to symbolic algebra

• Cost(Accurate evaluation in Large Exponent Model) ≥
Cost(symbolic expression ≡ 0?)

• Proof idea: Simulate symbolic algebra using large ex-

ponents

– Cost(Accurate evaluation of p) ≥ Cost(p ≡ 0?)

– Suppose p(x0, ..., xm−1) a symbolic polynomial with

max degree D− 1, integer coeffs of max # bits B− 1

– Let Xi = 2B·Di

– Then p(X0, ..., Xm−1) = 0 iff p ≡ 0

∗ Idea: bits in typical term α · xe11 · · · xem−1
m−1

of p do not “overlap” so cannot cancel in sum

• Example: determinant of A each entry of which is

rational

Open Questions

• Are there FP expressions that we provably cannot CAE

in Large Exponent (LE) model?

–
∏n
i=1(1 + xi)− ∏n

j=1(1 + yj)

– Determinant of general matrix

– Determinant of tridiagonal matrix

– Such an example could distinguish LE from SE

– Conversely, are there fast algorithms for these?

• What does symbolic computing complexity tell us about

CAE in LE model, and vice versa?

• What changes if we have sign information?

– We have accurate algorithms for all

Totally Positive (TP) matrices, but not efficient

– How big a class of TP matrices can we do efficiently?

– Generalized Vandermondes ≡ Schur Functions

• What changes if we have complex data?

• Differential equations

– Only simplest ones understood

– What about other discretizations?

– Conjecture: Accuracy depends only on geometry,

not material properties

• What about nonsymmetric eigenproblem?

• Blum/Shub/Smale model

Conclusions

• We have identified many classes of floating point ex-

pressions and matrix computations that permit

– Accurate solutions: relative error < 1

– Efficient solutions: time = poly(size)

• Classes depend strongly on model of FP arithmetic

– 1+δ model: most limited classes, but still interesting

– Bit model with Large Exponents: strictly more, but

limited by complexity of symbolic algebra

– Bit model with Small Exponents: strictly more again,

since not “really” FP, just integer arithmetic

• Need new algorithms for Large Exponents

– Conventional algorithms with enough precision would

be exponentially slower

– New algorithm much faster in practice!

• Lots of open problems

• Reports available

– www.cs.berkeley.edu/~demmel/NASC.ps

to appear Contemporary Mathematics soon

– SIMAX, v. 21, n. 2, pp 562–580, 1999

– Lin. Alg. Appl., vol 299, issue 1-3, pp 21–80, 1999

– These slides: www.cs.berkeley.edu/~demmel/ISSAC2001_2.ps

