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Abstract

We present and analyze several simple algorithms for accurately summing n floating point
numbers S =

∑n
i=1 si, independent of how much cancellation occurs in the sum. Let f be the

number of significant bits in the si. We assume a register is available with F > f significant
bits. Then assuming that (1) n ≤ �2F−f/(1 − 2−f )� + 1, (2) rounding is to nearest, (3) no
overflow occurs, and (4) all underflow is gradual, then simply summing the si in decreasing
order of magnitude yields S rounded to within just over 1.5 units in its last place. If S = 0,
then it is computed exactly. If we increase n slightly to �2F−f/(1− 2−f )�+3 then all accuracy
can be lost. This result extends work of Priest and others who considered double precision
only (F ≥ 2f). We apply this result to the floating point formats in the (proposed revision of
the) IEEE floating point standard. For example, a dot product of IEEE single precision vectors∑n

i=1 xi ·yi computed using double precision and sorting is guaranteed correct to nearly 1.5 ulps
as long as n ≤ 33. If double extended is used n can be as large as 65537. We also show how
sorting may be mostly avoided while retaining accuracy.
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1 Introduction

We present and analyze several simple algorithms for accurately summing n floating point numbers.
A good history of these algorithms may be found in chapter 4 in Higham’s book [6, 5] and in Priest’s
dissertation [18, 17].

Suppose we are given n floating point numbers s1, . . . , sn, which we may assume without loss of
generality are finite and nonzero. Our goal is to compute S =

∑n
i=1 si accurately, with (nearly) all

correct bits no matter how extreme the cancellation is, i.e. no matter how much smaller |S| is than∑n
i=1 |si|. We can of course do this by carrying enough extra precision, but the practical question

we address is how little extra precision we need to do so efficiently.
Here is our notation. We write si = ±2eimi, where ei ≥ eMIN is the integer exponent and the

significand mi satisfies 0 ≤ mi < 2. We say that si is normalized if 1 ≤ mi < 2 or si = 0 (which is
represented by mi = 0 and ei = eMIN), unnormalized if 0 < mi < 1, and subnormal if 0 < mi < 1
and ei = eMIN. We write ei = EXP(si). Let f be the number of significant bits (including any
hidden bit [1]) in the mi. One unit in the last place (ulp) in the f -bit floating point number x is
ulp(x) ≡ 2EXP(x)−f+1.

If x̂ �= 0 is an f -bit floating point approximation of the real number x, we will measure the
relative error in x̂ in two ways, by |x̂ − x|/|x̂| or by |x̂ − x|/ulp(x̂) (the relative error measured in
ulps). Note that an error of 2f−1 ulps or more means that x and x̂ need not even have the same
sign, and that just rounding x to f bits can cause an error of 0.5 ulps. Section 8.9 further discusses
these two relative error measures.

Suppose we have an extra precise floating point register with F > f significant bits. The
following is our first algorithm:

Algorithm 1. Accurate floating point summation by sorting the input.

1. Sort the si so that EXP(s1) ≥ EXP(s2) ≥ · · · ≥ EXP(sn)
. . . the input data may be normalized, unnormalized, or subnormal.

2. SUM ← 0. . . .SUM has F significant bits.
3. for i← 1 to n
4. SUM ← SUM + si

5. end
6. sum← round(SUM) . . . round SUM back to f bits.

Note that the sorting by exponents may be accomplished by sorting the si by decreasing magni-
tude: |s1| ≥ |s2| ≥ · · · ≥ |sn|. This would make the algorithm run in time O(n log n). Alternatively,
one could do a bucket or radix sort on the (much shorter) exponent fields of the si, reducing the
running time to O(n). The next theorem describes our results.

Theorem 1. Suppose that

1. f ≥ 2, i.e. we have at least two bits of precision in the data,

2. F ≥ f + 1, i.e. we have at least one extra bit of precision in the extra precise floating point
accumulator,

3. the exponent range for the F -bit format is at least as wide as for the f -bit format,
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4. rounding is to nearest (ties may be broken arbitrarily),

5. underflow, if it occurs, is gradual, and

6. no overflow occurs.

Let n̄ be defined by

n̄ = 1 +

⌊
2F−f

1− 2−f

⌋
= 1 + 2F−f + 2F−2f + · · ·+ 2F mod f

and r be defined by
r = f − (F mod f) = (�F/f�+ 1)f − F

so that r is the unique integer in the range 1 ≤ r ≤ f such that r + F ≡ 0 (mod f).
Then exactly one of the following four statements describes the maximum relative error in the

value of sum computed by Algorithm 1:

1. If n ≤ n̄, then the error is at most 1
1−21−f + 1

2 ulps. For typical values of f this is just over
1.5 ulps.

2. If n = n̄+1, F ≥ 2f , and s2 is normalized, then the error is at most max
{
2.5, 1.5

1−21−f + 1
2

}
ulps. (By s2 we mean after sorting in the first step of Algorithm 1.)

3. If n = n̄+1 and either F < 2f or s2 is unnormalized, then the error is at most max
{
3.5, 2r + 1

2

}
ulps.

4. If n ≥ n̄ + 2, then the relative error can be larger or equal to 1 (no relative accuracy). For
example, the computed sum may be zero when the true sum is not.

All the above error bounds are nearly attainable. If n ≤ n̄+1 (cases 1, 2, and 3 above), the computed
sum is positive, zero, or negative exactly when S is positive, zero, or negative, respectively.

If F < 2f , then sorting the si’s more finely by magnitude instead of just the exponents (so that
|s1| ≥ |s2| ≥ · · · ≥ |sn|) does not change the above results.

Assumptions 1 through 5 of Theorem 1 are satisfied by the formats of the (proposed revision
of the) IEEE binary floating point standard [1, 2, 7]. Assumption 6 depends of course on the data
s1, . . . , sn as well.

This theorem completely characterizes the maximum attainable error from Algorithm 1. It is
noteworthy that the worst case error deteriorates from nearly perfect (approximately 1.5 ulps) to
complete loss of accuracy (computing sum = 0 when the exact sum is nonzero) just by increasing
n by 2, from n̄ to n̄+ 2.

The cost of Algorithm 1 is dominated by sorting. We also present Algorithms 2, 3 and 4 that
reduce the cost of sorting at the expense of lowering the largest value of n for which they guarantee
a small error. Depending on n, f , F , and the relative costs of memory accesses, arithmetic and
extracting a bit field from a floating point number, any of Algorithms 1, 2, 3 or 4 may be fastest.
This is discussed further in section 5.

The main contribution of this paper is our complete analysis of Algorithm 1, and more generally
our algorithms for exploiting any amount of extra precision F > f . In contrast, prior work (see
section 6) addresses just the case of at least double precision F ≥ 2f .
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A related accurate summation problem is distillation [17, 3], where the goal is to compute
the exact floating point sum S represented as the sum of as few f -bit quantities as possible: S =∑n

i=1 si =
∑m

i=1 ti where m is as small as possible. The idea is that each f -bit quantity ti represents
a subset of the bits in S. Early versions of this algorithm (see Algorithm 5 in section 4) cost O(n2),
and Priest gave an O(n log n) algorithm. In section 4 we give an O(n) algorithm for distillation of
at most n ≤ 2F−f quantities that runs in time O(n).

The rest of the paper is organized as follows. Sections 2 and 3 present and analyze Algorithms 2,
3 and 4. Their analyses are simple consequences of Theorem 1, whose complicated proof we post-
pone until later. Section 4 discusses distillation. Section 5 gives examples comparing Algorithms 1,
2, 3 and 4 for various values of f and F in the proposed IEEE floating point standard. It also con-
siders the computation of dot products and distillation. Section 6 discusses related work. Section 7
presents the results of numerical testing of Algorithm 1. Section 8 proves Theorem 1. Section 9
draws conclusions and states open problems.

2 Accurate summation by partially sorting the input

The cost of Algorithm 1 is dominated by sorting the input si by their exponent fields. These
fields are typically short (e.g. 8 bits for IEEE floating point single precision numbers) so one could
consider radix or bucket sorting.

Our next algorithm reduces the cost of sorting the exponents further to just radix or bucket
sorting on the leading exponent bits. But as a consequence, fewer numbers can be added accurately.

We let EXPb(s) denote the exponent of s rounded down to the nearest multiple of 2b; if the
exponent is stored as an unsigned integer (as in IEEE floating point arithmetic) then EXPb(s) is
obtained by zeroing out (or just ignoring) the trailing b bits of EXP(s).

Algorithm 2. Accurate floating point summation by partially sorting the input.

1. Sort the si so that EXPb(s1) ≥ EXPb(s2) ≥ · · · ≥ EXPb(sn)
. . . the input data may be normalized, unnormalized, or subnormal

2. SUM ← 0 . . .SUM has F significant bits
3. for i← 1 to n
4. SUM ← SUM + si

5. end
6. sum← round(SUM) . . . round SUM back to f bits

Theorem 2. Let
f ′ = f + 2b − 1,

and

n̄′ = 1 +

⌊
2F−f ′

1− 2−f ′

⌋
.

Then the following statement holds:

1. If n ≤ n̄′, then the error in the sum computed by Algorithm 2 is bounded by 1
1−21−f ′ + 1

2 ulps.

5



2. If n = n̄′+1, then the error in the sum computed by Algorithm 2 is bounded bymax
{
3.5, 2r + 1

2

}
ulps, where r = (�F/f ′� + 1)f ′ − F is the unique integer in the range 1 ≤ r ≤ f ′ such that
r + F ≡ 0 (mod f ′).

Note that these error bounds are the same as statements 1 and 3 of Theorem 1 if we replace f by
f ′.

In other words, ignoring the trailing b exponent bits when sorting lowers the maximum value of
n for which a small (about 1.5 ulp) error is guaranteed by a factor of about 22b−1. Only the bounds
in Theorem 1 are valid; we do not know whether they are attainable in the case of Theorem 2.

Proof. The proof is a simple consequence of Theorem 1. As we will see in the proof of Theorem 1
(Section 8), the only part of the proof of Theorem 1 that assumes that s2 is normalized is in Section
8.2, where the bound in the case n = n̄ + 1, F ≥ 2f is tightened. We do not need this part of
Theorem 1 for Theorem 2.

Suppose the si have their exponents sorted as required by Algorithm 2. Then consider an f -bit
floating point number si as an (f+2b−1)-bit unnormalized floating point number, by adjusting the
exponent down to the nearest multiple of 2b and shifting the fraction at most 2b − 1 bit positions.
These unnormalized numbers have sorted exponents as required by Algorithm 1.

3 Accurate summation without sorting the input

We give third and fourth accurate summation algorithms that completely eliminate the need to
sort the inputs si. Instead, we will have a fixed array of F -bit accumulators A0, . . . , AN−1 each
of which will accumulate an exact sum of a subset of the si. Then these Aj will be added using
Algorithm 1. Depending on f and F , the number N of these accumulators may be much less than
n, greatly lowering the cost of sorting. Each si will only be read from memory once. This algorithm
will require accessing the exponent field of each si to decide to which accumulator Aj to add it.

We assume for simplicity that the exponent field of the si is an unsigned integer, as in IEEE
floating point arithmetic [1]. In other words the true EXP(s) is gotten by taking the stored exponent
bits of s, interpreting them as a nonnegative integer, and subtracting a constant. For example, this
constant is 127 for IEEE single precision and 1023 for IEEE double precision.

Suppose that there are E bits in the stored exponent and f bits in the fraction of each si.

Algorithm 3. Accurate summation without sorting the input (version 1)

1. Choose parameter e (number of leading exponent bits of each si to extract)
according to Theorem 3 below.

2. Initialize Ak ← 0 for k = 0, 1, . . . , N − 1, where N = 2e.
3. for i← 1 to n
4. j ← leading e bits of the stored exponent of si

5. Aj ← Aj + si

6. end
7. Add the Aj in order of decreasing exponent fields, yielding an F -bit SUM
8. sum← round(SUM) . . . round SUM back to f bits
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By letting j be the leading exponent bits of si, Algorithm 3 divides the exponent range of the
si into groups of powers of two. Obviously one could divide the exponent range into groups that
are not powers of 2, but this would require an integer division rather than a simple bit extraction
to compute j, so we do not consider this more expensive possibility (see section 6 on related work).

Theorem 3. Algorithm 3 computes sum with an error of about 1.5 ulps provided

n ≤ 2F−f−2E−e−e+1.

This upper bound on n is maximized by the choice e = E or e = E − 1, yielding

n ≤ 2F−f−E .

Proof. The condition that each Aj be computed exactly means adding up to n numbers with
exponents differing by as much as 2E−e − 1. This means we can think of the si as fixed point
numbers with f + 2E−e − 1 bits. Adding n of them exactly would take an additional log2 n� bits,
leading to the inequality

log2 n�+ f + 2E−e − 1 ≤ F . (1)

Now we apply Theorem 1 to the array A0, ..., AN−1. Each accumulator has at most f ′ = log2 n�+
f +2E−e−1 nonzero bits, and thus we can sort and accurately add as many as N = 2e F -bit words
if

N ≤
⌊

2δ

1− 2f ′

⌋
where δ = F − f ′. (2)

This inequality is satisfied if e ≤ δ. Inequality (1) is equivalent to the weaker inequality 0 ≤ δ, so
the single inequality that we must choose e in the range 0 ≤ e ≤ E to satisfy is

log2 n� ≤ F − f − 2E−e − e+ 1 (3)

yielding the first claim of the theorem.
Next we ask what is the largest number n of si that we can add accurately using this method

for any choice of e? In other words, we want to maximize the right hand side of (3) over 0 ≤ e ≤ E.
By inspection we see that e = E or e = E − 1 both maximize the expression, yielding

log2 n� ≤ F − f − E (4)

which is the second claim of the theorem.

The choice e = E − 1 is preferable to e = E because there are half as many Aj to sort and add
at the end. On the other hand, it may be faster to extract the whole exponent (e = E) than just
the leading e = E − 1 bits.

This analysis of Algorithm 3 is pessimistic because it is unlikely that all N = 2e accumulators
Aj will be nonzero, for this would require the si to be distributed all the way from the underflow
to the overflow threshold. Nonetheless, we now consider a variation on Algorithm 3 that further
increases the maximum number of si whose sum we can guarantee to compute accurately.

Algorithm 4 will be very similar to Algorithm 3, except it will split each F -bit accumulator into
at most F/f� f -bit quantities, and then adds these quantities in sorted order.
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Algorithm 4. Accurate summation without sorting the input (version 2)

1. Choose parameter e (number of leading exponent bits of each si to extract)
according to Theorem 4 below.

2. Initialize Ak ← 0 for k = 0, 1, . . . , N − 1, where N = 2e.
3. for i← 1 to n
4. j ← leading e bits of the stored exponent of si

5. Aj ← Aj + si

6. end
7. ... Break all the Aj into f -bit quantities tk with the same sum
8. k = 0
9. for all Aj �= 0
10. while Aj �= 0
11. k = k + 1
12. tk = round(Aj) ... round Aj back to f -bits
13. Aj = Aj − tk
14. end
15. end
16. Add t1 through tk using Algorithm 1, 2, 3 or 4(recursively)
17. ... to terminate, Algorithm 4 must eventually call Algorithm 1, 2, or 3 in the line above

Theorem 4. Algorithm 4 computes sum with an error of about 1.5 ulps provided

n ≤ 2F−f−2E−e+1

where
e ≤ min(E,F − f − log2 F/f�) .

The upper bound on n is maximized with the choice of e = min(E,F − f − log2 F/f�).
Proof. The analysis is analogous to that of Theorem 3. We still get inequality (1) but replace
inequality (2) by

k ≤
⌈
F

f

⌉
N =

⌈
F

f

⌉
2e ≤ 2F−f < n̄ = 1 +

⌊
2F−f

1− 2−f

⌋
(5)

or
e ≤ F − f − log2F/f� .

Since log2 F/f� ≥ log2F/f� and e ≤ E as well, we get the statement of the theorem. It is easy
to see that maximizing e maximizes the bound on n.

Given a value of n, we can choose e to minimize the work in Algorithm 3 by finding the smallest
e in the range 0 ≤ e ≤ E satisfying the first inequality of Theorem 3, since N = 2e is the number
of accumulators Aj to sort and add at the end. Similarly, we can choose e to minimize the work in
Algorithm 4. We consider these possibilities in the section comparing Algorithms 1 through 4.
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4 Distillation in O(n) time

We consider the problem of distillation [3, 18], or computing the exact sum S =
∑n

i=1 si of n f -bit
quantities represented as the sum S =

∑m
i=1 di of as few f -bit quantities as possible. The goal

is for the di to contain pairwise disjoint subsets of all the bits of S, but in practice we settle for
|di| ≥ 2f |di−1|, so that dm is within 1 ulp of S. (Note that the di’s do not have to have the same
sign.)

Distillation is accomplished most simply by copying the s() array to the d() array and repeatedly
sweeping through the d() array and replacing each pair (di, di+1) by (di + di+1 − d̂, d̂), where d̂ is
the sum di + di+1 rounded to f bits.

Algorithm 5. Accurate floating point summation via distillation in O(n2) time [3, 18]. (The exact
sum is

∑n
i=1 di, but leading di that are equal to zero should be discarded, so that m is the number

of nonzero di.)

1. repeat
2. for i← 1 to n− 1
3. if |di| > |di+1| then
4. d̂← di + di+1

5. di ← (di − d̂) + di+1

6. di+1 ← d̂
7. else
8. d̂← di + di+1

9. di ← (di+1 − d̂) + di

10. di+1 ← d̂
11. end if
12. end for
13. until |di| ≤ 2−F |di+1| ∀ i

In the worst case this simple procedure does Θ(n2) work, although an O(n log n) version is given
by Priest [18]. To understand the complexity, one can think of Algorithm 5 in the worst case doing
bubble sort on the di, whereas Priest’s algorithm does merge sort.

Both Algorithm 5 and Priest’s version assume only an f -bit floating point format is available.
Furthermore, there is no limit on the value of n for which Algorithm 5 or Priest’s version works
correctly. If however we (1) assume an F -bit format is available, and (2) limit n depending on F , f
and E as in Algorithm 4, then we can perform distillation in O(n) time, without sorting. The idea
is simply that lines 1 through 15 of Algorithm 4 replace the input array s1, ..., sn by the (generally
shorter) array t1, ..., tk with the same sum, and k ≤ F/f�2e ≤ F/f�2E . Note that F/f�2E

depends only on the floating point formats, not n. Thus, we could apply either Algorithm 5 or
Priest’s version to t1, ..., tk to get the final distilled sum in O(n) time. In practice, depending on n,
F , f , and E, it might pay to call Algorithm 4 recursively to further compress the array t1, ..., tk,
or in fact the algorithm might not work at all, in the case when k > n (in which case no progress
is made). We discuss these possibilities further in the next section.
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5 Comparing Algorithms 1, 2, 3 and 4

We consider various values of f and F arising from computations in the (proposed revision of
the) IEEE floating point standard [1, 2, 7]. Recall that the numbers of significant bits (including
hidden ones) in single (S), double (D), extended (E), and quad (Q) formats are 24, 53, 64 and 113,
respectively. The number of bits in their exponent fields are 8, 11, 15 and 15, respectively.

5.1 Accurate Summation

We begin by comparing the largest values of n for which we can guarantee an accurate sum (good to
about 1.5 ulps) when the si are stored with f bits, and SUM and any Aj are stored in F > f bits.
These values of n are labeled n1.5 ulps in the tables below. In the case of Algorithm 1, Theorem 1
tells us n1.5 ulps = n̄. When n1.5 ulps is very large, we approximate it by the nearest powers of 2 and
10 (the power of 2 shown is actually a lower bound on n1.5 ulps).

Since Algorithms 2, 3 and 4 have parameters b and e to choose, that reduce their costs while
also reducing the maximum value of n for which they guarantee accuracy, we also show n1.5 ulps for
various choices of b and e. For Algorithm 2, we actually show E − b, where E is the number of
exponent bits in si, because the dominant cost of Algorithm 2 is radix or bucket sorting on E − b
bits. Theorem 2 tell us that the value of n1.5 ulps for Algorithm 2 is at least 2F−f−2b+1. Only values
of b for which n1.5 ulps exceeds 2 are shown, since otherwise the algorithm is not useful.

Theorem 3 tells us that the value of n1.5 ulps for Algorithm 3 is 2F−f−2E−e−e+1. Only values of
e for which n1.5 ulps exceeds 2 are shown, since otherwise the algorithm is not useful. N = 2e is
the number of F -bit accumulators Aj that need to be sorted and added, and is also shown. Only
values of e for which N is less than n1.5 ulps are shown, since otherwise the algorithm is not useful
(because it requires more work than Algorithm 1).

Theorem 4 tells us that the value of n1.5 ulps for Algorithm 4 is 2F−f−2E−e+1 where e ≤
min(E,F − f − log2 F/f�). Both e and the maximum number M = F/f�2e ≥ k of f -bit
quantities t1, ..., tk that are generated (to be added by Algorithms 1, 2, 3, or 4) are shown. Only
values of e for which n1.5 ulps exceeds M are shown, since otherwise the algorithm is not useful
(because it requires more work than Algorithm 1). Similarly, only values of e for which the number
of items to sort is smaller than Algorithm 3 is shown (for the same value of n), since otherwise
Algorithm 4 requires more work than Algorithm 3.

Note that for all combinations except si of type D and SUM of type E, it is possible to sum
tens of millions of numbers accurately while sorting only tens, hundreds or perhaps thousands of
numbers. Only with the aforementioned D/E combination are we limited to summing just 211+1 =
2049 numbers accurately. In particular, Algorithm 3 does not apply to the D/E combination
(because n is limited to n ≤ 2F−f−E = 264−53−11 = 1), and neither does Algorithm 4 (because
it reduces the problem of summing 2F−f−2E−e+1 = 212−211−e

numbers to the problem of summing
F/f�2e = 2e+1 numbers, which is greater than 212−211−e

for 0 ≤ e ≤ min(E,F −f −log2 F/f�) =
10).

Note that Table 1 also suggests how to choose the cheapest algorithm to use for any particular n,
by indicating which one does the least sorting. (Which algorithm is really cheapest for a particular
value of n will of course depend on programming and architectural details.) For example, consider
the case where si of type S and SUM is of type D:
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Table 1: Limit of lengths of accurate sums for Algorithms 1, 2, 3, 4.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
si SUM n1.5 ulps E − b n1.5 ulps e N n1.5 ulps e M n1.5 ulps

S D ≈ 229 ≈ 109 7 ≈ 228 ≈ 108 7 128 221 ≈ 106 8 768 229 ≈ 109

6 ≈ 226 ≈ 108 6 64 220 ≈ 106 7 384 228 ≈ 108

5 ≈ 222 ≈ 106 5 32 217 = 131072 6 192 226 ≈ 108

4 214 + 1 = 16385 4 16 210 = 1024 5 96 222 ≈ 106

S E ≈ 240 ≈ 1012 7 ≈ 239 ≈ 1012 7 128 232 ≈ 109 8 768 240 ≈ 1012

6 ≈ 237 ≈ 1011 6 64 231 ≈ 109 7 384 239 ≈ 1012

5 ≈ 233 ≈ 1010 5 32 228 ≈ 108 6 192 237 ≈ 1011

4 ≈ 225 ≈ 107 4 16 221 ≈ 106 5 96 233 ≈ 1010

3 29 + 1 = 513 3 8 26 = 64
S Q ≈ 289 ≈ 1027 7 ≈ 288 ≈ 1026 7 128 281 ≈ 1024 8 1280 289 ≈ 1027

6 ≈ 286 ≈ 1026 6 64 280 ≈ 1024 7 640 288 ≈ 1026

5 ≈ 282 ≈ 1024 5 32 277 ≈ 1023 6 320 286 ≈ 1026

4 ≈ 274 ≈ 1022 4 16 270 ≈ 1021 5 160 282 ≈ 1024

3 ≈ 258 ≈ 1017 3 8 255 ≈ 1016

2 ≈ 226 ≈ 108 2 4 224 ≈ 107

D E 211 + 1 = 2049 10 210 + 1 = 1025
9 28 + 1 = 257
8 24 + 1 = 17

D Q ≈ 260 ≈ 1018 10 ≈ 259 ≈ 1018 10 1024 249 ≈ 1015 11 6144 260 ≈ 1018

9 ≈ 257 ≈ 1017 9 512 248 ≈ 1014 10 3072 259 ≈ 1018

8 ≈ 253 ≈ 1016 8 256 245 ≈ 1013 9 1536 257 ≈ 1017

7 ≈ 245 ≈ 1013 7 128 238 ≈ 1011 8 768 253 ≈ 1016

6 ≈ 229 ≈ 109 6 64 223 ≈ 107

E Q ≈ 249 ≈ 1015 14 ≈ 248 ≈ 1014 14 16384 234 ≈ 1010 15 65536 249 ≈ 1015

13 ≈ 246 ≈ 1014 13 8192 233 ≈ 1010 14 32768 248 ≈ 1014

12 ≈ 242 ≈ 1012 12 4096 230 ≈ 109 13 16384 246 ≈ 1014

11 ≈ 234 ≈ 1010 11 2048 223 ≈ 107 12 8192 242 ≈ 1012

10 ≈ 218 ≈ 105 11 4096 234 ≈ 1010

1. For n ≤ 15, Algorithm 1 or perhaps Algorithm 2 with b = 4 may be fastest (requiring sorting
at most n ≤ 15 numbers).

2. For 16 ≤ n ≤ 1024, Algorithm 3 with e = 4 may be fastest (requiring sorting at most 16
numbers).

3. For 1025 = 210 + 1 ≤ n ≤ 222, Algorithm 4 with e = 5 may be fastest (generating at most 96
f -bit numbers which can then be added using Algorithm 3 with e = 4, requiring sorting of at
most 16 numbers).

4. For 222 + 1 ≤ n ≤ 226, Algorithm 4 with e = 6 may be fastest (generating at most 192 f -bit
numbers which can then be added using Algorithm 3 with e = 4, requiring sorting of at most
16 numbers).

5. For 226 + 1 ≤ n ≤ 228, Algorithm 4 with e = 7 may be fastest (generating at most 384 f -bit
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numbers which can then be added using Algorithm 3 with e = 4, requiring sorting of at most
16 numbers).

6. For 228 + 1 ≤ n ≤ 229, Algorithm 4 with e = 8 may be fastest (generating at most 768 f -bit
numbers which can then be added using Algorithm 3 with e = 4, requiring sorting of at most
16 numbers).

7. For 229+1 ≤ n ≤ n̄ = 229+25+1, only Algorithm 1 is guaranteed accurate (requiring sorting
all n numbers).

In contrast, when the type of si is D and the type of SUM is E, the best we can do is using
Algorithm 1 or Algorithm 2 and sorting all n ≤ 2049 inputs.

We note that the Intel Itanium architecture [8] has 126 assignable floating point registers of type
E, which would make Algorithm 3 for si of type S quite efficient for very large n. In contrast, the
earlier Pentium architecture [9] with only 8 such registers would not support Algorithm 3 efficiently
for n ≥ 64.

5.2 Accurate Dot Products

Next, we consider the computation of inner products
∑n

i=1 xi · yi using Algorithms 1, 2, 3 or 4. We
assume xi and yi are f -bit numbers, and that we have one or more F -bit accumulators available.
We can perform this dot product accurately in one of two ways. The first way is to assume F > 2f ,
compute si = xi · yi exactly in F bits, and then sum the 2f -bit numbers si using Algorithm 1, 2, 3
or 4. (Note that si may also have an exponent field one bit wider than that of xi or yi, so E is one
larger.) The values of n1.5 ulps are shown for this method in Table 2. As before, we omit versions of
algorithms that are manifestly inferior to other versions, or that simply do not work (as with D/E
in Table 1).

Table 2: Limit of lengths of accurate dot products for Algorithms 1, 2, 3, 4.

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
xi, yi SUM n1.5 ulps E − b n1.5 ulps e N n1.5 ulps e M n1.5 ulps

S D 25 + 1 = 33 8 24 + 1 = 17
7 22 + 1 = 5

S E 216 + 1 = 65537 8 215 + 1 = 32769 9 1024 216 = 65536
7 213 + 1 = 8193 8 512 215 = 32768
6 29 + 1 = 513 7 256 213 = 8192

S Q ≈ 265 ≈ 1019 8 ≈ 264 ≈ 1019 8 256 ≈ 256 ≈ 1017 9 1536 265 ≈ 1019

7 ≈ 262 ≈ 1018 7 128 ≈ 255 ≈ 1016 8 768 264 ≈ 1019

6 ≈ 258 ≈ 1017 6 64 ≈ 252 ≈ 1015 7 384 262 ≈ 1018

5 ≈ 250 ≈ 1015 5 32 ≈ 245 ≈ 1013 6 192 258 ≈ 1017

4 ≈ 234 ≈ 1010 4 16 ≈ 230 ≈ 109

3 22 + 1 = 5
D Q 27 + 1 = 129 8 26 + 1 = 65

7 24 + 1 = 17

Alternatively, we can convert the dot product into a sum
∑2n

i=1 si of twice as many f -bit numbers
by using well-known techniques for breaking the exact 2f -bit product xi ·yi = hi+ti into the sum of

12



two f -bit numbers (heads and tails) containing the leading and trailing bits of the product, [17, 18].
The most efficient was to get hi and ti is to use the fused-multiply-add instruction available on the
Itanium [8]; the two instructions hi = xi · yi, ti = xi · yi − hi with the latter implemented using
fused-multiply-add do the trick. This lets us compute accurate dot products for n up to half the
values of n1.5 ulps shown in Table 1. This is the best way to deal with long dot products when the
type of xi and yi are S and the type of SUM is D or E, or when xi and yi are in higher precision.

5.3 Distillation

We may example the data for Algorithm 4 in Table 1 to see how well distillation works. For
example, consider the case where si of type S and SUM is of type D:

1. For n ≤ 96, apply Priest’s distillation algorithm.

2. For 96 < n ≤ 222, apply the first 15 lines of Algorithm 4 with e = 5 to reduce the problem to
distilling at most 96 numbers. Then, apply Priest’s distillation algorithm to distill these 96
numbers.

3. For 222 < n ≤ 226, apply the first 15 lines of Algorithm 4 with e = 6 to reduce the problem
to distilling at most 192 numbers. Then apply the first 15 lines of Algorithm 4 with e = 5
to reduce the problem to distilling at most 96 numbers. Finally, apply Priest’s distillation
algorithm to distill these 96 numbers.

4. For 226 < n ≤ 228, apply the first 15 lines of Algorithm 4 with e = 7 to reduce the problem
to distilling at most 384 numbers. Then apply the first 15 lines of Algorithm 4 with e = 5
to reduce the problem to distilling at most 96 numbers. Finally, apply Priest’s distillation
algorithm to distill these 96 numbers.

5. For 228 < n ≤ 229, apply the first 15 lines of Algorithm 4 with e = 8 to reduce the problem
to distilling at most 768 numbers. Then apply the first 15 lines of Algorithm 4 with e = 5
to reduce the problem to distilling at most 96 numbers. Finally, apply Priest’s distillation
algorithm to distill these 96 numbers.

In contrast, for the D/E case, only the original distillation algorithms apply.

6 Related Work

There is a long history of these sorts of algorithms discussed in [5, 6, 17, 18]. Important contributors
include Bohlender [3], Dekker [4], Kahan [10], Knuth [11], Leuprecht/Oberaigner [12], Linnainmaa
[13], Malcolm [14], Møller [15], Pichat [16], Priest [17, 18], Ross [19] and Wolfe [20].

Priest considers the two most similar algorithms to Algorithm 1: double precision summation
[18, p. 62] and doubly compensated summation [18, p. 64], both of which correspond to Algo-
rithm 1 when F ≥ 2f . Double precision summation assumes two formats are available, and doubly
compensated summation uses only one precision, but does 10 add/subtract operations in the inner
loop instead of a single addition, in order to simulate double precision.

The main contribution of our analysis of Algorithm 1 is to analyze the general case F > f , for
example to understand what can be done with the formats in the (proposed revision of the) IEEE
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floating point standard [1, 2, 7], when F may not satisfy F ≥ 2f . In particular, our contribution is
the unimprovable bound on the number n of numbers that can be accurately summed, as a function
of F and f .

We also slightly improve Priest’s result [18, p. 62] by increasing the maximum value of n for
which summation is guaranteed accurate over 8-fold from 2F−f−3 to n̄ > 2F−f . This was not a
significant restriction on the utility of Priest’s result, since 2F−f−3 was already quite large when
for practical values of F and f (e.g. F − f − 3 = 53 − 24 − 3 = 26 for IEEE single and double
precisions). Our error bound and Priest’s are essentially the same, about 1 ulp before the final
rounding of SUM to get sum.

Malcolm [14] presents an algorithm analogous to our Algorithm 3, where he breaks up each
f -bit number si into q words each with f/q nonzero bits, sums the resulting q · n words into f -bit
accumulators exactly, and then sums the accumulators in (roughly) decreasing order. Malcolm uses
an integer division by a possibly-non-power-of-2 to extract and scale the exponent; in contrast we
restrict ourselves to the much cheaper operation of extracting a bit field from the exponent. As
above, our contribution is to exploit the availability of any extra precision F > f to lower the cost.

Bohlender [3] and Priest [18] both discuss distillation algorithms, of complexity O(n2) and
O(n log n), respectively, for any values of n. For n bounded by at most 2F−f , our distillation
algorithm based on Algorithm 4 runs in time O(n).

7 Numerical Testing

We confirmed the bound on n in Theorem 1 via extensive numerical testing where we generated
“random” data s1, . . . , sn with massive cancellation, and confirmed the correctness of the computed
sum. Our testing also showed that random tests are very unlikely to reveal the limits in the cases
n = n̄ + 1 and n ≥ n̄ + 2, unless they are constructed with the revelation of these limits in mind.
In other words, adding numbers in decreasing magnitude order is likely to give accurate answers
for n much larger than the n̄ limit of Theorem 1.

Here is how we generated “random” examples. We did all computation in IEEE single precision,
i.e. with F = 24. We generated f < 24 bit data by taking single precision numbers and zeroing
out the trailing 24− f bits.

We used the simple distillation Algorithm 5 from section 4 to compute the exact sum of a set
of single precision numbers. This simple procedure is adequate for our testing purposes.

In this section, we assume F < 2f , so that n̄ = 1 + 2F−f . Our initial sets of test cases were
determined by 5 parameters na, ns, e, f , and fs as follows:

Algorithm 6. Generating random numbers whose sum is tiny.

1. Generate na random numbers with f -bit fractions (stored in 24-bit numbers), with random ex-
ponents spanning the range from −e/2 to e/2. (If na = 1, then e must be zero.)

2. Compute the exact sum of these na numbers by distillation.

3. Choose ns numbers to cancel this exact sum as much as possible. Each number is chosen as
follows:

14



3.1. Take the correct sum of the numbers chosen so far as computed by distillation, truncate
it to fs bits, fill in the remaining f − fs bits randomly, and negate the result. This
number cancels the leading fs bits of the sum so far.

3.2. Adjoin the number just selected to the list so far, and update the correct sum by distilla-
tion again.

Thus the total number of numbers generated is n = na+ns, unless the loop in step 3 terminates
prematurely because the overall sums cancels to zero exactly, in which case n < na +ns. The total
cancellation is about C ≈ min(e+f, ns ·fs) bits, depending on whether cancellation to zero occurs.
Statistics on the actual cancellation C are shown in the tables below. When C exceeds 24, as it does
in almost all cases shown, the usual error analysis of straightforward summation without sorting
says that we can expect no relative accuracy.

The answer is computed two ways: using Algorithm 1, and using the straightforward algorithm
where the numbers are added in the order generated, without sorting. Error statistics (max and
median) are given for both algorithms in the tables below. Error for Algorithm 1 is denoted “Err”
and error for the straightforward algorithm is denoted “SErr”.

Error is measured as follows. When the true sum is zero, the error is measured as the number
of nonzero bits that failed to cancel in the computed sum, which is the number of bits in the range
from the trailing fraction bit of any si to the leading bit of the computed sum. For example if the
smallest trailing fraction bit is 2−120 and the leading bit of the computed sum is 2−25, then Err is
−25− (−120) + 1 = 96. Thus Theorem 1 says that when n ≤ 2F−f + 1, the maximum Err should
be log2 0 = −∞.

When the true sum is nonzero, the error is measured as base-2 logarithm of the error in units of
ulps in the computed sum, where the leading word of the distilled sum is taken as the exact sum.
In other words, the error is roughly the number of incorrect bits. If the computed sum and the
exact sum agree exactly, then Err = log2 0 = −∞. If the computed sum is zero, we say one ulp is
2−149, the smallest positive subnormal number. Thus Theorem 1 says that when n ≤ 2F−f +1, the
maximum Err should be a little over 0 (1 ulp) at most (we do not do the final rounding to f bits).

The initial parameters sets chosen for testing were as follows, all of which satisfy the condition
n ≤ n̄. One million random tests were generated for each parameter set.

Description of Case True sum = 0 True sum �= 0
% Med Max Max Med % Med Max Max Med

Case na ns n e f F − f fs Exs C Err SErr SErr Exs C Err SErr SErr
1 1 2 3 0 23 1 18 7 23 −∞ −∞ −∞ 93 26 −∞ −∞ −∞
2 1 2 3 0 23 1 22 88 23 −∞ −∞ −∞ 12 26 −∞ −∞ −∞
3 3 2 5 17 22 2 18 8 40 −∞ 16 12 92 39 −∞ 118 22
4 3 2 5 23 22 2 22 83 45 −∞ 22 18 17 45 −∞ 114 22
5 5 4 9 50 21 3 18 17 72 −∞ 53 44 83 78 −∞ 21 21
6 6 3 9 50 21 3 21 22 71 −∞ 49 43 88 68 −∞ 21 21

Here are some comments on these tests. The test cases are grouped by F − f , with 2 cases
each for F − f = 1, 2 and 3. The errors for the true sum equal to zero and nonzero are shown
separately (the “% Exs” column shows the percentage of the 106 examples in each category). Since
n ≤ 2F−f +1, we expect a small Err, at most a little more than 0, in all cases. In fact all 24 bits of
the computed sum from Algorithm 1 were correct in all cases, leading to Err = log2 0 = −∞. This
was true even though the number of bits C that need to cancel correctly range up to a median of
78, far exceeding single precision.
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The error SErr from the straightforward algorithm is also shown. In Cases 1 and 2 (with
na = 1) Algorithm 6 turns out to generate the summands in sorted order, so the Algorithm 1 and
the straightforward algorithm behave identically. But in Cases 2 through 6 the error SErr from
the straightforward algorithm is much larger than Err as expected. When the true sum is nonzero
and SErr = f , as it frequently does, this means all bits in the computed sum are wrong. The cases
when Max SErr equal 114 or 118 occur when the straightforward sum cancels exactly to zero (so
one ulp is 2−149) but the the exact sum is nonzero.

Now we consider cases where n far exceeds the limit 2F−f + 1 of Theorem 1. Thus we expect
larger errors. In the first set below, the random numbers were generated just as before.

Description of Case True sum = 0 True sum �= 0
% Med Max Max Med % Med Max Max Med

Case na ns n e f F − f fs Exs C Err SErr SErr Exs C Err SErr SErr
7 50 12 62 200 23 1 18 5 224 207 225 198 95 227 23 23 23
8 50 9 59 200 23 1 23 19 223 199 202 196 81 221 30 23 23
9 50 12 62 200 22 2 18 13 223 −∞ 224 195 87 227 −∞ 22 22
10 50 9 59 200 22 2 22 4 221 −∞ 200 194 96 213 −∞ 22 22
11 50 12 62 200 21 3 18 28 222 −∞ 224 195 72 227 −∞ 21 21
12 50 9 59 200 21 3 21 .3 221 −∞ 199 193 99.7 205 −2 21 21

In all cases, well over 200 bits of cancellation (Med C) of the 256-bit exponent range were
required to get the correct answer. In cases 7 and 8, with f = 23, the Max Err is large, with nearly
all bits wrong. But in cases 9 through 12, with f ≤ 22, the error is very small, almost always −∞
(i.e. no difference from the exact result) and at most −2 (i.e. 2−2 ulps). This shows that random
testing is unlikely to reveal the limits on n in Theorem 1. SErr shows that the straightforward
algorithm was nearly always wrong in all its bits.

Finally, we present some results where we modify Algorithm 6 to generate test cases slightly
differently to try to increase the error: we make sure that that ns numbers chosen to cancel the
sum of the previously chosen numbers have have magnitude at most 2f−F−1 ·maxk |sk|. In other
words, the numbers are chosen to mimic the example used in the proof of attainability of the error
bound in the case n = n̄+ 1 of Theorem 1, with numbers chosen to slowly cancel away the largest
sk, and small enough to cause rounding. Only 104 random examples were run in each case.

Description of Case True sum = 0 True sum �= 0
% Med Max Max Med % Med Max Max Med

Case na ns n e f F − f fs Exs C Err SErr SErr Exs C Err SErr SErr
13 50 9 59 200 23 1 23 .7 224 190 199 194 99.3 144 23 23 23
14 50 9 59 200 22 2 22 .07 222 −∞ 196 194 99.93 48(221) 24 222 22
15 50 9 59 200 21 3 21 .01 221 −∞ 195 195 99.99 2(219) 21 221 −2

Now we see the expected failures in Algorithm 1 (large Max Err’s) when f = 22 and 21, when
the true sum is nonzero. The entries “48(221)” and “2(219)” indicate that the median cancellation
C is indeed only 48 bits (when f = 22) or 2 bits (when f = 21), but the maximum is 221 bits
(when f = 22) or 219 bits (when f = 21), i.e. much larger.

8 Proof of Theorem 1

We begin by establishing more basic facts and notation.
Suppose x = ±2em is a normalized nonzero floating point number, so that 1 ≤ m < 2. Then

e ≤ log2 |x| < e + 1 and hence e = �log2 |x|�. For any normalized, unnormalized, or subnormal x
we have |x| < 2e+1.
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We assume without loss of generality that the si have already been sorted as described in
Algorithm 1. We introduce the following notation so we can talk about intermediate results in the
algorithm:

1. ̂SUM0 ← 0
2. for i← 1 to n

3. ̂SUM i ← ̂SUM i−1 + si

4. end
5. ŝum← round( ̂SUMn)

We let quantities with hats like ̂SUM i denote the computed quantity corresponding to the
exact value SUMi.

We let Ek = EXP( ̂SUMk) for all k. We let eS = EXP(S), where S is the exact sum represented
as a floating point number, with as many significant bits as necessary. Let εi be the roundoff
error committed in the F -bit floating point addition ̂SUM i = fl( ̂SUM i−1 + si). In other wordŝSUM i = ̂SUM i−1 + si + εi exactly.

Let

θ = 1 +
2F−f

1− 2−f
= 1 + 2F−f + 2F−2f + 2F−3f + · · · ,

so that
n̄ = �θ� = 1 + 2F−f + 2F−2f + · · ·+ 2F−�F/f�f .

Note that if F < 2f , then n̄ = 1 + 2F−f . Also note that

θ − n̄ = 2−r + 2−r−f + 2−r−2f + · · · = 2−r

1− 2−f
,

where r = (�F/f� + 1)f − F , the unique integer in the range 1 ≤ r ≤ f such that r + F ≡ 0
(mod f). Hence

n̄ = 1 +
2F−f − 2−r

1− 2−f
. (6)

We will sometimes use the bounds

n̄ =
2F−f + 1− 2−r − 2−f

1− 2−f
<

2F−f + 1
1− 2−f

(7)

and

n̄− 2 =
2F−f − 1− 2−r + 2−f

1− 2−f
≤ 2F−f − 1

1− 2−f
. (8)

Recall that 1 ulp of an f -bit number x = ±2e ·m �= 0 is 2e−f+1. By writing x as a fixed point
bit string, we may speak of the leading bit of x being located at position e, and the trailing bit of
x being located at position e − f + 1, the leading bit of 2e+1 being one position to the left of the
leading bit of 2e, and so on. We may also speak of the rightmost nonzero bit of x, which may lie
anywhere from e to e− f + 1 inclusive.

We will occasionally use
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Fact 1. The rightmost nonzero bit of ̂SUMk must lie at or to the left of the trailing bit of sk. This
is because ̂SUMk is gotten by summing s1 through sk, whose trailing bits are at or to the left of the
trailing bit of sk, since the exponents of s1 through sk are in decreasing order.

To proceed with the proof of Theorem 1 we define I so that SUMI is the last summand that is
computed exactly. In other words SUMi = ̂SUM i for 1 ≤ i ≤ I, and SUMI+1 �= ̂SUM I+1. Note
that this means SUMI �= 0, for otherwise ̂SUM I+1 = sI+1 would be exact. We may also assume
I < n for otherwise there would be nothing to prove.

We may also assume that SUMI is normalized. To see this, let EMIN be the exponent of the
smallest positive normalized number, and suppose that SUMI is subnormal so that it requires
at most F − 1 bits to represent. If eI+1 < EMIN, then both SUMI and sI+1 occupy the same
(F − 1)-bit range EMIN − 1 to EMIN − F + 1, so SUMI+1 can be represented exactly in F bits. If
eI ≥ EMIN, then by Fact 1, the rightmost nonzero bit of SUMI must be at or to the left of the
trailing bit of sI , i.e., the bits of SUMI are all in the range from EMIN−1 to eI+1−f+1, inclusive.
Thus both sI+1 and SUMI lie in the f -bit range eI+1 to eI+1 − f + 1, so the sum SUMI+1 is also
exactly representable in F bits. Hence in either case the next sum SUMI+1 is computed exactly,
contradicting the definition of I. Thus we can henceforth assume that SUMI is normalized, and
so 2EI+1 > |SUMI | ≥ 2EI .

The strategy of the proof will be to show that | ̂SUMn| cannot be too much smaller than
|SUMI |, and that the rounding errors can also be bounded proportionally to |SUMI |, and use this
to establish a relative error bound. For most of the proof, we will be content to establish a bound
on the relative error before the final rounding to f bits, i.e. a bound on

| ̂SUMn − S|
| ̂SUMn|

.

In Section 8.9, we will translate this bound into a bound on |ŝum− S|.
The proof considers a number of cases. To make the case analysis clear, we consider two

independent ways of dividing all the situations.
The first way to divide up the situations considers the relative locations of the trailing bits of

SUMI and sI+1. The following 3 properties clearly divide all possible situation into 3 disjoint sets:

Property 1: The trailing bit of sI+1 is located to the right of the trailing bit of SUMI :
eI+1 − f + 1 < EI − F + 1.

Property 2: The trailing bit of sI+1 is at the same location as the trailing bit of SUMI :
eI+1 − f + 1 = EI − F + 1.

Property 3: The trailing bit of sI+1 is located to the left of the trailing bit of SUMI :
eI+1 − f + 1 > EI − F + 1.

The second way to divide up the situations considers the leftmost location of the leading bits
of ̂SUM I+1 through ̂SUMn:

Property A: The leftmost leading bit of ̂SUM I+1 through ̂SUMn is at the same location or to
the right of the leading bit of SUMI : maxk>I Ek ≤ EI .
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Property B: The leftmost leading bit of ̂SUM I+1 through ̂SUMn is to the left of the leading bit
of SUMI : maxk>I Ek > EI .

Now we may consider six cases, labeled 1A, 1B, 2A, 2B, 3A and 3B, according to which pair
of properties holds. We may also have subcases of these cases depending on the size of n. There
may be further subcases depending on when the exponents ek and Ej further decrease below their
initial levels.

We would like to believe a simpler proof exists, but have not managed to find one.

8.1 Case 1A - n ≤ n̄ + 1

Property 1 means eI+1 ≤ EI − F + f − 1, so let K be the smallest integer in the range I ≤ K ≤ n
such that ek ≤ EI−F +f−2 for all k > K. In other words, eI+1 through eK are all EI−F +f−1,
and eK+1 through en are all at most EI − F + f − 2. Note that either list, but not both, can be
vacuous. Thus we have the bounds

|sk| ≤
{

2EI−F+f (1− 2−f ) for I + 1 ≤ k ≤ K
2EI−F+f−1(1− 2−f ) for K + 1 ≤ k ≤ n

(9)

Property A implies Ek ≤ EI for all k ≥ I, so let J be the largest integer in the range I ≤ J ≤ n
such that EJ = EI but Ej < EI for all j > J . In other words ̂SUMJ is the last computed partial
sum with the exponent EI . This enables us to bound 1 ulp on the partial sums:

ulp( ̂SUM j) ≤
{

2EI−F+1 for I ≤ j ≤ J
2EI−F for J + 1 ≤ j ≤ n

(10)

We consider the cases J ≤ K and K < J separately.

8.1.1 Case J ≤ K

In this case, we have 1 ≤ I ≤ J ≤ K ≤ n. The additions of sI+1 through sJ , resulting in ̂SUM I+1

through ̂SUMJ , can yield a maximum roundoff error of half an ulp in each of ̂SUM I+1 througĥSUMJ , which is at most 2EI−F each. If K ≥ J+1, then addition of sJ+1 causes no roundoff, sincêSUMJ+1 is computed by exact cancellation. Additions of sJ+2 through sK to the partial sumŝSUMJ+1 through ̂SUMK−1, resulting in the partial sums ̂SUMJ+2 through ̂SUMK , also causes
no roundoff, since all the numbers involved occupies the same F -bit range. Finally, the additions
of sK+1 through sn can cause roundoff errors at most 2EI−F−1 each. Thus we have the roundoff
error bounds

|εi| ≤


2EI−F for I + 1 ≤ i ≤ J
0 for J + 1 ≤ i ≤ K
2EI−F−1 for K + 1 ≤ i ≤ n

(11)

Thus we can bound the total roundoff error

| ̂SUMn − S| ≤
n∑

i=I+1

|εi|

≤ (J − I)2EI−F + (n−K)2EI−F−1

= (2J − 2I + n−K)2EI−F−1

= 2EIN1A, J≤K(I, J,K, n), (12)
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where
N1A, J≤K(I, J,K, n) = (2J − 2I + n−K)2−F−1.

We now bound | ̂SUMn| from below by noting that | ̂SUMJ | ≥ 2EI and using the triangle
inequality:

| ̂SUMn| = | ̂SUMJ + (sJ+1 + · · ·+ sn) + (εJ+1 + · · · + εn)|

≥ | ̂SUMJ | −
n∑

i=J+1

|si| −
n∑

i=J+1

|εi|

≥ 2EI − (K − J)2EI+f−F (1− 2−f )− (n−K)2EI+f−F−1(1− 2−f )− (n−K)2EI−F−1

= 2EI

[
1− (K − 2J + n)2f−F−1(1− 2−f )− (n−K)2−F−1

]
= 2EID1A, J≤K(J,K, n), (13)

where
D1A, J≤K(J,K, n) = 1− (K − 2J + n)2f−F−1(1− 2−f )− (n−K)2−F−1.

The relative error is then bounded by

| ̂SUMn − S|
| ̂SUMn|

≤ N1A, J≤K(I, J,K, n)
D1A, J≤K(J,K, n)

≡ RE1A, J≤K(I, J,K, n). (14)

Note that I = J < K cannot occur since means that EI+1 < EI − 1 and ̂SUM I+1 is computed
without roundoff by exact cancellation, contradicting our choice of I. Hence we must have either
I = J = K or I < J ≤ K, and the worst case relative error is bounded by the maximum of
RE1A, J≤K(I, J,K, n) over the domain U = {(I, J,K) | 1 ≤ I = J = K ≤ n or 1 ≤ I < J ≤ K ≤
n}:

| ̂SUMn − S|
| ̂SUMn|

≤ max
(I,J,K)∈U

RE1A, J≤K(I, J,K, n).

We consider the two cases I = J = K and I < J ≤ K separately.

8.1.1.1 Case I = J = K. We first note that the denominator D1A, J≤K(I, I, n) becomes

D1A, J≤K(I, I, n) = 1− (n− I)2f−F−1.

Since (n− I) ≤ n̄, we can use bound (7) to get

D1A, J≤K(I, I, n) ≥ 1− n̄2f−F−1 > 1− 2−1 + 2f−F−1

1− 2−f
≥ 1− 2−1 + 2−2

1− 2−2
= 0.

Thus n ≤ n̄+ 1 implies that the denominator is positive.
If (n− I) ≤ n̄− 1 (implied by n ≤ n̄), then

RE1A, J≤K(I, I, I, n) ≤ (n̄− 1)2−F−1

1− (n̄− 1)2f−F−1

=
2−1−f − 2−F−1−r

(1− 2−f )− (2−1 − 2f−F−r−1)
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=
2−f (1− 2f−F−r)
1− 21−f + 2f−F−r

<
2−f

1− 21−f
. (15)

If (n− I) = n̄ (implying n = n̄+ 1), then

RE1A, J≤K(I, I, I, n) ≤ n̄2−F−1

1− n̄2f−F−1

=
2−1−f + (1− 2−f − 2−r)2−F−1

(1− 2−f )− 2−1 − (1 − 2−f − 2−r)2f−F−1

=
2−f

[
2−1 + (1− 2−f − 2−r)2f−F−1

]
(1− 2−f )− 2−1 − (1 − 2−f − 2−r)2f−F−1

=
2−f

[
1 + (1− 2−f − 2−r)2f−F

]
1− 21−f − (1− 2−f − 2−r)2f−F

. (16)

To bound the last line in the above inequality, we consider the cases F − f = 1 and F − f ≥ 2
separately. If F − f = 1, then r = f − 1, and so

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

= 2−f

[
1 + (1− 2−f − 21−f )2−1

1− 21−f − (1− 2−f − 21−f )2−1

]

= 2−f

[
3(1 − 2−f )
1− 2−f

]
= 3 · 2−f . (17)

If F − f ≥ 2, then

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

≤ 2−f

[
1 + (1− 21−f )2−2

1− 21−f − (1− 21−f )2−2

]

= 2−f 1
3

[
1 +

4
1− 21−f

]
≤ 3 · 2−f . (18)

Hence in either case, RE1A, J≤K(I, J,K, n) ≤ 3 · 2−f .

8.1.1.2 Case I < J ≤ K. We maximize RE1A, J≤K as follows. First, we need to confirm
that the denominator D1A, J≤K(I, J,K, n) remains positive over the range of parameters, so that
RE1A, J≤K(I, J,K, n) is bounded. Then we compute the derivatives of RE1A, J≤K(I, J,K, n) with
respect to J and K in order to find the maximum.

21



We first consider minimizing D1A, J≤K(I, J,K, n). We see easily that D1A, J≤K is an affine
function of J , K and n:

D1A, J≤K(J,K, n) = 1−K(2f−F−1(1− 21−f )) + J(2f−F (1− 2−f ))− n2f−F−1.

Thus the minimum occurs when K is maximized and J is minimized, i.e., J = I + 1 and K = n.
At this point, we have

D1A, J≤K(I, I + 1, n, n) = 1− (n− I − 1)2f−F (1− 2−f ).

This is positive if and only if

n− I − 1 <
2F−f

1− 2−f
= θ − 1.

Since n ≤ n̄+ 1 certainly implies that n− I − 1 < θ − 1, the denominator remains positive.
We now proceed to the maximization of RE1A, J≤K(I, J,K, n). We note that the derivatives of

RE1A, J≤K with respect to J and K are given by

∂

∂J
RE1A, J≤K =

1
2FD2

1A, J≤K

[
1− (n− I)2f−F (1− 2−f )− (n−K)2−F−1

]
(19)

and
∂

∂K
RE1A, J≤K =

−1
2F+1D2

1A, J≤K

[
1− (n− I)2f−F (1− 2−f ) + (J − I)2−F

]
. (20)

We consider the cases (n− I) ≤ n̄− 1 and (n− I) = n̄ separately.

Case (n − I) ≤ n̄− 1 (implied by n ≤ n̄). We note that

1− (n− I)2f−F (1− 2−f ) ≥ 1− (n̄− 1)2f−F (1− 2−f ) > 0,

so that ∂
∂KRE1A, J≤K < 0. Thus maximal RE1A, J≤K occurs when J = K. To determine J , we set

K = J and compute the derivative

∂

∂J
[RE1A, J≤K(I, J, J, n)] =

1
2F+1D2

1A, J≤K

[
1− (n− I)2f−F

]
.

Note that the sign of this derivative does not depend on J , so we can compute the value of
RE1A, J≤K at the endpoints J = n and J = I+1, depending on the sign of ∂

∂JRE1A, J≤K(I, J, J, n).
If ∂

∂JRE1A, J≤K(I, J, J, n) ≥ 0, then

RE1A, J≤K(I, J,K, n) ≤ RE1A, J≤K(I, n, n, n)
= (n− I)2−F ≤ (n̄− 1)2−F

=
2−f (1− 2f−F−r)

1− 2−f

≤ 2−f

1− 21−f
.
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If ∂
∂JRE1A, J≤K(I, J, J, n) < 0, then

RE1A, J≤K(I, J,K, n) ≤ RE1A, J≤K(I, I + 1, I + 1, n)
≤ RE1A, J≤K(I, I, I, n)

≤ 2−f

1− 21−f
,

where the last inequality comes from (15).

Case (n − I) = n̄ (implies n = n̄+ 1). Note that (n− I) = n̄ > θ − 1 = 2F−f/(1− 2−f ), so

∂

∂J
RE1A, J≤K =

1
2FD2

1A, J≤K

[
1− (n− I)2f−F (1− 2−f )− (n−K)2−F−1

]
<
−(n−K)2−F−1

2FD2
1A, J≤K

≤ 0, (21)

and so the maximum occurs when J = I + 1. Thus given J = I + 1, we have

∂

∂K
RE1A, J≤K

∣∣∣∣
J=I+1

=
−1

2F+1D2
1A, J≤K

[
1− (n − I)2f−F (1− 2−f ) + 2−F

]
=

−1
2F+1D2

1A, J≤K

[
1− (2F−f + 1− 2−r − 2−f )2f−F + 2−F

]
=

2f−F (1− 2−r − 21−f )
2F+1D2

1A, J≤K

≥ 0. (22)

Thus we want to maximize K, so we take K = n. Thus the maximum occurs when J = I + 1 and
K = n, giving

RE1A, J≤K(I, I + 1, n, n) =
2−F

1− (n− I − 1)2f−F (1− 2−f )

=
2−F

1− (2F−f − 2−r)2f−F

=
2−F

2f−F−r
= 2r−f . (23)

Note that if F < 2f , then r = 2f − F , so RE1A, J≤K ≤ 22f−F · 2−f < 1
2 . Section 8.2 shows that

this bound can be tightened if F ≥ 2f and s2 is normalized.

8.1.2 Case K < J.

In this case we have I ≤ K < J ≤ n. As before addition of sI+1 through sJ can yield a roundoff
error of at most 2EI−F each. Addition of sJ+1 through sn can cause roundoff error of at most
2EI−F−1 each. Thus we have the bounds

|εi| ≤
{

2EI−F for I + 1 ≤ i ≤ J
2EI−F−1 for J + 1 ≤ i ≤ n.
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Thus the total roundoff error is bounded by

| ̂SUMn − S| ≤ (J − I)2EI−F + (n − J)2EI−F−1

= 2EI (J − 2I + n)2−F−1

= 2EIN1A, K<J(I, J, n), (24)

where N1A, K<J(I, J, n) = (J − 2I + n)2−F−1. We can bound | ̂SUMn| from below:

| ̂SUMn| = | ̂SUMJ + (sJ+1 + · · ·+ sn) + (εJ+1 + · · · + εn)|

≥ | ̂SUMJ | −
n∑

i=J+1

|si| −
n∑

i=J+1

|εi|

≥ 2EI − (n− J)2EI+f−F−1(1− 2−f )− (n− J)2EI−F−1

= 2EI

[
1− (n− J)2f−F−1

]
= 2EID1A, K<J(I, J, n), (25)

where
D1A, K<J(I, J, n) = 1− (n− J)2f−F−1.

Now we want to maximize

RE1A, K<J(I, J, n) =
N1A, K<J(I, J, n)
D1A, K<J(I, J, n)

over 1 ≤ I ≤ K < J < n. But notice that

RE1A, K<J(I, J, n) = RE1A, J≤K(I, J, J, n).

The domain we are maximizing, I < J ≤ n, is a subset of the domain we are maximizing in section
8.1.1.2, so the same bounds holds on RE1A, K<J .

8.2 Case 1A - n = n̄ + 1, F ≥ 2f

If F ≥ 2f , we can further tighten the error bound for the case n = n̄ + 1 using the fact that
SUM1 cannot have full span of F bits. A part of this section (section 8.2.2) assumes that s2 is
normalized, and thus the error bound shown in this section (claim 2 of Theorem 1) does not apply
to Theorem 2.

The only places where the error bound is larger than claim 2 of Theorem 1 are bounds (17),
(18), and (23). Of these, bound (17) does not apply, since we are assuming F ≥ 2f , which implies
F − f ≥ 2. Bound (18) can be dealt with ease by considering the cases F − f = 2 and F − f ≥ 3
separately. If F − f = 2, then f = 2, and thus

RE1A, J≤K(I, J,K, n) ≤ 2−f 1
3

[
1 +

4
1− 21−f

]
= 2−f 1.5

1− 21−f
.

24



If F − f ≥ 3, then

RE1A, J≤K(I, J,K, n) ≤ 2−f

[
1 + (1− 2−f − 2−r)2f−F

1− 21−f − (1− 2−f − 2−r)2f−F

]

≤ 2−f

[
1 + (1− 21−f )2−3

1− 21−f − (1− 21−f )2−3

]

= 2−f 1
7

[
9− 21−f

1− 21−f

]

< 2−f 1.5
1− 21−f

.

Hence we now focus on tightening bound (23). Note that this inequality can be reached via
section 8.1.2 as well. In addition, both of these sections can be reached via 8.3. Thus assume I < J
as in sections 8.1.1.2 and 8.1.2, and also assume (n− I) = n̄ (which implies I = 1 and n = n̄+ 1).

If J > I + 1 = 2, then ∂
∂JRE1A, J≤K shown in (19) is still negative (as in (21)), so maximal

RE1A, J≤K occurs when J = I + 2. Given J = I + 2, we evaluate ∂
∂KRE1A, J≤K :

∂

∂K
RE1A, J≤K

∣∣∣∣
J=I+2

=
2f−F (1− 2−r − 3 · 2−f )

2F+1D2
1A, J≤K

.

Note that the above expression is negative if r = 1 and f = 2, and non-negative otherwise. Thus
if r = 1 and f = 2, then n̄ = 1 + (2F − 2)/3, and so

RE1A, J≤K(I, J,K, n) ≤ RE1A, J≤K(I, I + 2, I + 2, n)

=
(n − I + 2)2−F−1

1− (n− I − 2)2f−F−1

= 2−f

[
(n̄+ 2)21−F

1− (n̄ − 2)21−F

]

= 2−f

[
2 + 14 · 2−F

1 + 10 · 2−F

]
< 2 · 2−f .

Otherwise ∂
∂KRE1A, J≤K remains non-negative, and

RE1A, J≤K(I, J,K, n) ≤ RE1A, J≤K(I, I + 2, n, n)

=
2 · 2−F

1− (n− I − 2)2f−F (1− 2−f )

=
2 · 2−F

1− (n̄− 2)2f−F (1− 2−f )

=
2 · 2−f

1 + 2−r − 2−f

≤ 2 · 2−f .

The remaining case is when J = I + 1 = 2. We split this case into two subcases, depending on
whether K = I or K > I. (The former case can arise from section 8.1.2.)
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8.2.1 Case K = I = 1

This case arises from section 8.1.2, so we consider the relative error bound RE1A, K<J(I, J, n). Now
note that

∂

∂J
RE1A, K<J =

1
2F+1D2

1A, K<J

[
1− (n− I)2f−F

]
,

which is negative when n = n̄+1. Hence the bound is maximized when J = I +1, and thus (using
(8)),

RE1A, K<J(I, J, n) ≤ RE1A, K<J(I, I + 1, n)

=
(n− I + 1)2−F−1

1− (n− I − 1)2f−F−1

=
(n̄ − 2)2−F−1 + 2−F

1− (n̄− 2)2f−F−1

≤ 2−f

[
1− 2f−F + 2f−F+1 − 21−F

1− 21−f + 2f−F

]

< 2−f

[
1 + 21+f−F

1− 21−f

]

≤ 2−f
[

1.5
1− 21−f

]
.

8.2.2 Case K > I = 1

This subsection is the only part of the proof that assumes that s2 is normalized.
We will show that

| ̂SUM 2| ≥ 2E1(1 + 2f−F−1),

so that the bound on the denominator | ̂SUMn| can be tightened (remember that we are assuming
that I = 1 and J = 2).

Since SUM1 = s1, SUM1 must be an f -bit number. Thus either |SUM1| = 2E1 , or |SUM1| ≥
2E1(1 + 21−f ). In the former case, SUM1 and s2 must have the same signs (since E1 = E2), so

| ̂SUM2| ≥ 2E1 + 2E1−F+f−1 = 2E1(1 + 2f−F−1).

In the latter case,

| ̂SUM2| ≥ |SUM1| − |s2|
≥ 2E1(1 + 21−f )− 2E1−F+f

= 2E1(1 + 2−f + 2−f − 2f−F )
≥ 2E1(1 + 2−f )
> 2E1(1 + 2f−F−1),

assuming F ≥ 2f .
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Thus the denominator in the relative error bound is slightly larger:

| ̂SUMn| ≥ 2E1(1 + 2f−F−1)− (K − J)2E1+f−F (1− 2−f )−
(n−K)2E1+f−F−1(1− 2−f )− (n−K)2E1−F−1

= 2E1

[
1 + 2f−F−1 − (K − 4 + n)2f−F−1(1− 2−f )− (n−K)2−F−1

]
= 2E1

[
D1A, J≤K(2,K, n) + 2f−F−1

]
≡ 2E1D1A, J≤K, F≥2f (K,n)

The total roundoff error is still

| ̂SUMn − S| ≤ 2E1N1A, J≤K(1, 2,K, n) = 2E1(n−K + 2)2−F−1.

Thus we have the relative error bound

| ̂SUMn − S|
| ̂SUMn|

≤ N1A, J≤K(1, 2,K, n)
D1A, J≤K, F≥2f (K,n)

≡ RE1A, J≤K, F≥2f (K,n).

We can now compute the derivative

∂

∂K
RE1A, J≤K, F≥2f =

−1
2F+1D2

1A, J≤K, F≥2f

[
1 + 3 · 2f−F−1 − 2f−F (1− 2−f )n

]
.

Since the sign of the derivative does not depend on K, we can just evaluate RE1A, J≤K, F≥2f at the
two endpoints K = J = 2 and K = n. Thus

RE1A, J≤K, F≥2f (n, n) =
2−F

1 + 2f−F−1 − (n̄− 1)2f−F (1− 2−f )
=

2 · 2−f

1 + 21−r
< 2 · 2−f

and

RE1A, J≤K, F≥2f (2, n) =
n2−F−1

1 + 2f−F−1 − (n − 2)2f−F−1

= 2−f

[
(n̄− 1)2f−F−1 + 2f−F

1− (n̄− 2)2f−F−1

]

≤ 2−f

[
1 + 21+f−F − 21−F

1− 21−f + 2f−F

]

≤ 2−f · 2
[
1 + 21+f−F − 21−F

1 + 21+f−F

]
< 2−f · 2

Hence in either case the relative error is bounded by 2 · 2−f .
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8.3 Case 1B - n ≤ n̄ + 1

This case differs from case 1A since property B implies maxk>I Ek > EI . We now show that
maxk>I Ek = EI + 1. Suppose not, and let M be the smallest index in the range I < M ≤ n such
that EM = EI + 2. Then additions of sI+1 through sM−1 causes roundoff of at most 2EI−F+1,
while the addition of sM may cause a roundoff of at most 2EI−F+2. Then (M − I) ≤ n̄, so

| ̂SUMM | ≤ | ̂SUM I |+
M∑

j=I+1

|sj|+
M∑

j=I+1

|εj |

≤ 2EI+1(1− 2−F ) + (M − I)2EI+f−F (1− 2−f ) + (M − I)2EI−F+1 + 2EI−F+1

= 2EI+1
[
1− 2−F + (M − I)2f−F−1(1− 2−f ) + (M − I)2−F + 2−F

]
= 2EI+1

[
1 + (M − I)2f−F−1(1 + 2−f )

]
≤ 2EI+1

[
1 +

2F−f + 1− 2−f − 2−r

1− 2−f
2f−F−1(1 + 2−f )

]
.

To bound the last line, we consider F − f = 1 and F − f ≥ 2 separately. If F − f = 1, then
r = f − 1, so

| ̂SUMM | ≤ 2EI+1

[
1 +

3− 3 · 2−f

1− 2−f

5
16

]
= 2EI+1

[
1 +

15
16

]
< 2EI+2.

If F − f ≥ 2, then

| ̂SUMM | ≤ 2EI+1

[
1 +

1 + 2f−F − 21−F

1− 2−f
2−1(1 + 2−f )

]

≤ 2EI+1

[
1 +

1 + 2−2 − 2−1−f

1− 2−f
· 5
8

]

= 2EI+1

[
1 +

5− 2 · 2−f

1− 2−f
· 5
32

]

≤ 2EI+1
[
1 +

15
16

]
< 2EI+2.

Hence we see that the maximum exponent EM is EI + 1. We define K as in case 1A, but define J
slightly differently as follows, using Property B. Let J be the largest integer in the range I ≤ J ≤ n
such that EJ = EI + 1 but Ej ≤ EI for all j > J . This means that J > I, and

ulp(Ei) ≤
{

2EI−F+2 for I + 1 ≤ i ≤ J
2EI−F+1 for J + 1 ≤ i ≤ n

Since roundoff in computing ̂SUM i is at most half an ulp of ̂SUM i, we see that

|εi| ≤
{

2EI−F+1 for I + 1 ≤ i ≤ J
2EI−F for J + 1 ≤ i ≤ n
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Thus the total roundoff is bounded by

| ̂SUMn − S| ≤ (J − I)2EI−F+1 + (n− J)2EI−F = (J − 2I + n)2EI−F = 2EI+1N1B(I, J, n),

where N1B(I, J, n) = (J − 2I + n)2−F−1. We can bound | ̂SUMn| below as follows

| ̂SUMn| =

∣∣∣∣∣∣ ̂SUMJ +
n∑

j=J+1

(sj + εj)

∣∣∣∣∣∣
≥ | ̂SUMJ | −

n∑
j=J+1

|sj| −
n∑

j=J+1

|εj |

≥ 2EI+1 − (n− J)2EI−F+f (1− 2−f )− (n− J)2EI−F

= 2EI+1
[
1− (n− J)2f−F−1

]
= 2EI+1D1B(J, n)

where D1B(J, n) = 1− (n− J)2f−F−1. We immediately see that n ≤ n̄+ 1 implies | ̂SUMn| > 0.
Thus we have

RE1B(I, J, n) =
N1B(I, J, n)
D1B(J, n)

=
(J − 2I + n)2−F−1

1− (n − J)2f−F−1
.

Here note that
RE1B(I, J, n) = RE1A, K<J(I, J, n),

so the same analysis in Section 8.1.2 applies.

8.4 Case 2A

We will show that case 2A cannot occur by showing that ̂SUM I+1 would be computed exactly.
The nonzero bits of ̂SUM I lie between positions EI through EI −F +1, inclusive. Property 2 says
that the trailing bit of sI+1 is in the same location as the trailing bit of ̂SUM I . Since the exponent
of ̂SUM I+1 does not increase (by property A), the nonzero bits of ̂SUM I , ̂SUM I+1, and sI+1 are
all in same range of F bits from EI to EI − F + 1. Thus ̂SUM I+1 = ̂SUM I + sI+1 is computed
exactly.

8.5 Case 2B

Property 2 means that eI+1 = EI − F + f , so we can define K to be the smallest integer in the
range I ≤ K ≤ n such that ek ≤ EI − F + f − 1 for k > K. In other words, eI+1 through eK are
all equal to EI + f − F and eK+1 through en are at most EI + f − F − 1. This implies that

|sk| ≤
{

2EI+f−F+1(1− 2−f ) for I + 1 ≤ k ≤ K
2EI+f−F (1− 2−f ) for K + 1 ≤ k ≤ n

Note that this definition of K is almost the same as in Case 1A (see (9)), except that all exponents
are increased by 1.
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Property B says that maxk>I Ek > EI . We first show that Ek ≤ EI + 2 for all k, I < k ≤ n.
Suppose not, and let M > I be the smallest index in the range I < M ≤ n such that EM = EI +3.
Then

| ̂SUMM | ≤ | ̂SUM I |+
M∑

i=I+1

|si|+
M∑

i=I+1

|εi|

≤ 2EI+1(1− 2−F ) + (M − I)2EI+f−F+1(1− 2−f ) + (M − I)2EI−F+2 + 2EI−F+2

= 2EI+1
[
1 + 2−F + (M − I)2f−F (1 + 2−f )

]
≤ 2EI+1

[
1 + 2−F +

1 + 2f−F

1− 2−f
(1 + 2−f )

]

≤ 2EI+1
[
1 + 1/8 +

1 + 1/2
1− 1/4

(5/4)
]

= 2EI+1 29
8

< 2EI+3

Hence the maximum exponent that can occur is EI + 2.
Now let M be the smallest integer (in the range I < M ≤ n) such that EM is the maximum

exponent. Then there are two cases to consider: EM = EI + 1 and EM = EI + 2.

8.5.1 EM = EI + 1

Since maxk>I Ek = EI + 1, so we can let J be the largest index in the range I ≤ J ≤ n such that
EJ = EI +1 but Ej ≤ EI for any j > J . This implies that 1 ulp in ̂SUM I+1 through ̂SUMJ is at
most 2EI−F+2, and that 1 ulp in ̂SUMJ+1 through ̂SUMn is at most 2EI−F+1. Note that J > I,
since EI+1 must equal EI +1, for otherwise there would be no roundoff when computing ̂SUM I+1,
contradicting the definition of I. This definition of J and associated bounds are analogous to those
of Case 1A, except that all exponents are increased by 1. Hence the definition of J and K are both
identical as in Case 1A except for the increased exponent, which cancels out of the final relative
error bound (14). Thus analogous analysis as in Case 1A applies, except that of section 8.2.2 (which
deals with the case F ≥ 2f , s2 normalized, I = 1, J = 2, K > I).

We now show that this exceptional case (where F ≥ 2f , s2 normalized, I = 1, J = 2, K > I)
cannot happen. Note that ̂SUM1 must be an f -bit number, so | ̂SUM 1| ≤ 2E1+1(1 − 2−f ). Since
E2 = E1 + 1, we must have |s2 + ε2| ≥ 2E1+1−f . If |s2| < 2E1+1−f , then |SUM2| < 2E1+1, so we
must have |ε2| ≤ 1

2ulp(SUM2) = 2E1−F . In this case,

| ̂SUM 2| = |SUM1 + s2 + ε2|
≤ 2E1+1(1− 2−f ) + 2E1+1−f (1− 2−f ) + 2E1−F

= 2E1+1(1− 2−2f + 2−1−F )
< 2E1+1,

which contradicts the assumption that E2 = E1 + 1. Hence we must have |s2| ≥ 2E1+1−f . By
property B we also have |s2| < 2E1+f−F+1, so

2E1+1−f ≤ |s2| < 2E1+f−F+1,

which implies E1 + 1 − f < E1 + f − F + 1, or F < 2f , again a contradiction. Hence the case in
section 8.2.2 cannot occur.
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8.5.2 EM = EI + 2

We must have

2EI+2 ≤ | ̂SUMM |

≤ | ̂SUM I |+
M∑

i=I+1

|si|+
M∑

i=I+1

|εi|

≤ 2EI+1(1− 2−F ) + (M − I)2EI+f−F+1(1− 2−f ) + (M − I)2EI−F+1 + 2EI−F+1

= 2EI+1
[
1 + (M − I)2f−F

]
Hence we must have (M−I) ≥ 2F−f . Note that if M−I = 2F−f , then the last addition just barely
rounds up to 2EI+2, so the roundoff error (in the last addition) is at most 2EI−F+1, not 2EI−F+2.
This implies that EM = EI , so this case cannot occur. Thus we must have M ≥ 2F−f + 2.

The total roundoff error is bounded by

|S − ̂SUMn| ≤ (M − I − 1)2EI−F+1 + (n−M + 1)2EI−F+2

= 2EI+1(2n −M − I + 1)2−F .

We now consider the cases F < 2f and F ≥ 2f separately.

8.5.2.1 Case F < 2f . In this case, we must have M = n = 2F−f + 2, so

|S − ̂SUMn| ≤ 2EI+1(2F−f + 2)2−F = 2EI+1(2−f + 21−F ).

Since M = n, we have | ̂SUMn| = | ̂SUMM | ≥ 2EI+2. Thus the relative error is bounded by

|S − ̂SUMn|
| ̂SUMn|

≤ 2−1−f + 2−F ≤ 2−f .

8.5.2.2 Case F ≥ 2f . We first bound the denominator | ̂SUMn|:

| ̂SUMn| ≥ | ̂SUMM | −
n∑

i=M+1

|si| −
n∑

i=M+1

|εi|

≥ 2EI+2 − (n−M)2EI+f−F+1(1− 2−f )− (n−M)2EI−F+2

= 2EI+1
[
2− (n−M)2f−F (1 + 2−f )

]
≥ 2EI+1

[
2− (n̄− 1− 2F−f )2f−F (1 + 2−f )

]
> 2EI+1

[
2− 2−f

1− 2−f
(1 + 2−f )

]

≥ 2EI+1
[
19
12

]
.
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Now if n ≤ n̄, then

|S − ̂SUMn| ≤ 2EI+1(2n −M − I + 1)2−F

≤ 2EI+1(2n̄ − 2F−f − 2)2−F

≤ 2EI+1

[
2F−f + 2F−2f

1− 2−f

]
2−F

= 2EI+12−f

[
1 + 2−f

1− 2−f

]

≤ 2EI+1 2−f

1− 2−f

5
4

This gives the bound on the relative error

|S − ̂SUMn|
| ̂SUMn|

≤ 15
19

2−f

1− 2−f
≤ 2−f

1− 21−f
.

Now consider when n = n̄+ 1. In this case,

|S − ̂SUMn| ≤ 2EI+1(2n−M − I + 1)2−F

≤ 2EI+1(2n̄− 2F−f )2−F

< 2EI+1

[
2−f + 21−F + 2−2f

1− 2−f

]

= 2EI+12−f

[
1 + 21+f−F + 2−f

1− 2−f

]

≤ 2EI+12−f 9/4
1− 2−f

.

So this gives the bound on the relative error when n = n̄+ 1:

|S − ̂SUMn|
| ̂SUMn|

≤ 27
19

2−f

1− 2−f
< 2−f

[
1.5

1− 21−f

]
.

8.6 Cases 3A and 3B

Finally we consider the easy cases 3A and 3B, and argue that they cannot occur, because ̂SUM I+1 =
SUMI+1 would in fact be computed exactly.

Fact 1 means that eI+1− f +1 ≤ EI since SUMI �= 0, and in fact the nonzero bits of SUMI lie
between EI and eI+1−f+1 inclusive. Since the nonzero bits of sI+1 lie between eI+1 and eI+1−f+1
inclusive, we conclude that all the nonzero bits of SUMI and sI+1 lie between max(EI , eI+1) and
eI+1 − f + 1, a maximum number of nonzero bits equal to

max(EI , eI+1)− (eI+1 − f + 1) + 1 = max(EI − eI+1 + f, f) ≤ max(F − 1, f) = F − 1.

Adding (or subtracting) bits that occupy at most F − 1 bit positions yields a sum (or difference)
that occupies at most F bit positions, which can be represented exactly in an F -bit register. SôSUM I+1 = SUMI+1 = SUMI + sI+1 is computed exactly.

32



8.7 Sign of S when n ≤ n̄ + 1

Note that if the relative error
| ̂SUMn − S|
| ̂SUMn|

(26)

is less than one, then the sign of S is exactly that of ̂SUMn, i.e., S is positive, zero, and negative
exactly when ̂SUMn is positive, zero, and negative, respectively. We also note that rounding to f
bits to obtain ŝum does not affect the sign, and does not round to zero unless ̂SUMn is zero (this
follows from Fact 1). Thus if the relative error (26) is less than one then ŝum is positive, zero, or
negative exactly when S is positive, zero, or negative, respectively.

If n ≤ n̄ + 1, there is only one place in the proof where the relative error reaches one, namely
in (23), section 8.1.1.2, under case when (n − I) = n̄ (which implies n = n̄ + 1 and I = 1). Note
that relation (23) can be reached via sections 8.1.2, 8.3, and 8.5.1 as well.

We now show that in this case the rounding errors are made toward zero, so that the true sum
S has the same sign as that of the computed sum ŝum. We can assume r = f since otherwise the
bound (23) remains less than one. This means that the derivative ∂

∂KRE1A, J≤K shown in (22) is
strictly positive, so the maximum relative error of 1 only occurs when J = I + 1 and K = n. This
fact precludes the cases arising from sections 8.1.2 and 8.3, since in those cases J = K is assumed.

We now consider the remaining case (r = f , J = I + 1 = 2, K = n = n̄ + 1) arising from
sections 8.1.1.2 and 8.5.1. Note that r = f implies F is an integer multiple of f . To achieve a
relative error of one, we must have | ̂SUM2| = 2EI , since otherwise the denominator D1A, J≤K will
be larger which makes it impossible to attain the maximum relative error of 1. Note that the only
roundoff error is ε2 (see (11)). There are two cases to consider, depending on whether the addition̂SUM1 + s2 caused a roundoff towards or away from zero. If it was away from zero (SUM2 rounds
up to the next power of 2), then the roundoff error committed is at most 2EI−F−1 instead of 2EI−F .
This reduces the numerator N1A, J≤K , making the relative error smaller than 1. If the roundoff was
towards zero, then the true sum is located away from zero relative to the computed sum ̂SUMn.
This means that S and ̂SUMn will have the same sign and both nonzero.

Hence in all cases n ≤ n̄+1 implies that S and ŝum have exactly the same sign: ŝum is positive,
zero, or negative exactly when S is positive, zero, or negative, respectively. In particular, we have
seen that if a rounding error occurs, then S is bounded away from zero. Taking the contrapositive,
if S = 0, then no rounding error occurs, which implies that S = ŝum = 0 is computed exactly.

8.8 Attainability of the error bounds

We present examples to show near attainability of error bounds in statements 3 and 4 of the
theorem.

8.8.1 Case n = n̄+ 1, F < 2f

If F < 2f , then the bound in claim 3 is achieved by the following example:

s1 = 1 + 2f−F

s2 = −2f−F (1− 2−f )
s3 = −2f−F (1− 2−f )
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...
sn̄+1 = −2f−F (1− 2−f )

The true sum is S = 2−f + 2−F . The exact value of SUM2 = s1 + s2 = 1 + 2−F requires F + 1
bits to represent exactly, and so it rounds down to ̂SUM 2 = 1. All subsequent additions are exact,
yielding ̂SUMn = 2−f . This gives the relative error 2f−F = 22f−F · 2−f , which is at most 1/2
(when F = f + 1) but can be much greater than 1 ulp whenever 2f � F , i.e. when F is much
less than double precision. Note that this example works only if F < 2f , since otherwise the first
number s1 cannot be represented in f bits.

8.8.2 Case n = n̄+ 1, F ≥ 2f and s2 unnormalized

Following example shows that if s2 is not normalized, then the bound in claim 2 does not apply.
Instead the weaker bound in claim 3 is achieved:

s1 = 2eMIN+F−f+1

s2 = 2eMIN−f+1

s3 = −2eMIN+1(1− 2−f )
...

sn̄+1 = −2eMIN+1(1− 2−f )

Note that s2 is subnormal, so EXP(s2) = EXP(s3) = · · · = EXP(sn̄+1) = eMIN (since eMIN

is the smallest exponent). Hence the si’s are sorted by exponent, but not by magnitude. The
true sum is 2eMIN+1(2−f + 2−r). The exact value of SUM2 = s1 + s2 = 2eMIN+F−f+1(1 + 2−F )
requires F +1 bits, so it rounds down to 2eMIN+F−f+1. All subsequent additions are exact, yieldinĝSUMn = 2eMIN+1 · 2−r. This gives a relative error of 2r−f , which can be as large as 1.

8.8.3 Case n = n̄+ 2

Consider the following example, corresponding to case 1B (with I = 1, J = 2, and K = n).

s1 = 1
s2 = 2f−F−1 + 2−F

s3 = −2f−F (1− 2−f )
s4 = −2f−F (1− 2−f )

...
sn̄+1 = −2f−F (1− 2−f )
sn̄+2 = −2f−F−1 − 2f−F−r

Note that the exponents of sk are sorted as long as r �= 1 and all terms are f -bit numbers.
Note that the exact result is S = 2−F . However, a roundoff error occurs when s2 is added,
since SUM2 = 1 + 2f−F−1 + 2−F needs F + 1 bits to store. Hence ̂SUM2 is rounded down to
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1 + 2f−F−1. The rest of the computation proceeds without any roundoff error, and the computed
sum is ̂SUMn = 0. Thus we have an example where relative error is infinite.

If r = 1, we can obtain an example where relative error is 1, by using sn̄+2 = −2f−F (1 − 2−f )
in the above example.

If F < 2f , we have another example (corresponding to case 1A with I = 1, J = 2, K = n):

s1 = 1 + 2f−F

s2 = −2f−F (1− 2−f )
s3 = −2f−F (1− 2−f )

...
sn̄+1 = −2f−F (1− 2−f )
sn̄+2 = −2−f

If F < 2f , then all the numbers are f bit long, and they are sorted by decreasing magnitude. Again,
the computed result is ŝum = 0, while the true sum is S = 2−F . This example shows that sorting
more finely by magnitude instead of just exponent does not improve the bound on the number of
terms that can be added accurately.

8.9 Bounding the error in ulps in ŝum

The relative error bound derived in all cases have the form

| ̂SUMn − S|
| ̂SUMn|

≤ δ2−f , (27)

where

δ =


1

1−21−f for n ≤ n̄

max
{
2, 1.5

1−21−f

}
for n = n̄+ 1, F ≥ 2f, and s2 normalized.

max {3, 2r} for n = n̄+ 1.

Here we convert this to a bound on |ŝum− S| equal to δ +0.5 ulps in ŝum. Bound (27) means

| ̂SUMn − S| ≤ δ2−f | ̂SUMn| < δ2En−f+1.

Thus if En ≥ eMIN (so that ŝum does not underflow), then

|ŝum− S| ≤ | ̂SUMn − S|+ |ŝum− ̂SUMn|
< δ2En−f+1 + 2En−f

≤ (δ + 0.5) ulp(ŝum).

Notice the last bound still holds even when ŝum rounds up to the next power of 2.
If En < eMIN, then rounding of ̂SUMn to ŝum does not cause any roundoff error (since by

Fact 1 all bits of ̂SUMn will be in the f − 1 bit range eMIN − 1 to EMIN − f + 1). Hence the same
final bound apply:

|ŝum− S| ≤ | ̂SUMn − S|
≤ δ2En−f+1

< (δ + 0.5) ulp(ŝum).
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Hence the true sum S is at most (δ + 0.5) ulps off from computed sum ŝum. This completes
the proof of Theorem 1.

9 Conclusions

We have described and analyzed four very simple algorithms for computing the accurate sum of n
floating point numbers S =

∑n
i=1 si with f fraction bits each. We exploit the availability of one or

more F > f bit accumulators to be as efficient as possible. The maximum value of n for which high
accuracy is guaranteed (about 1.5 ulps) depends on f , F and (for Algorithms 2, 3 and 4) the number
of exponent bits in the si. These maximum values of n are tabulated for the formats available in
the IEEE floating point standard. Any of the four algorithms might be cheapest, depending on the
relative costs of sorting, bit manipulation, and arithmetic.

Our analysis of Algorithm 1 is tight, in the sense that we know precisely how the maximum
attainable error depends on n, f and F . However we do not know if our analyses of Algorithms 2, 3
or 4 are tight, in the sense that our values of n guaranteeing high accuracy are as large as possible.
We also do not know if n is as large as possible when any of the algorithms are used to compute
dot products. But we do not believe that n could be more than 2 times larger than we have shown.

A natural extension to Theorem 1 is to consider cases with radix other than two. We expect
similar results, but exact error bounds are not known. It would also be of interest to analyze
the case where rounding in the F -bit format is less accurate than in IEEE round-to-nearest. For
example, Priest’s analysis of doubly compensated summation [18, p. 64] yields a value of n̄ over 8
times smaller than our analysis; what happens with other styles of multiple precision arithmetic?
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