200
150 Students Can’t Be Wrong!
GamesCrafters, a Computational Game Theory Undergraduate Research and Development Group at UC Berkeley

2007-11-13 @ 12:00-13:00 EST in Theatre 3 ICT, 111 Barry St, Carlton, Australia

Dan Garcia, Ph.D.
Lecturer SOE, EECS Dept, UC Berkeley
(on Sabbatical in Melbourne until 2008)

www.cs.berkeley.edu/~ddgarcia/
Student Groups

Problems

- Nothing to offer to your A+ students after course
- Faculty-student interaction limited
- Students don’t know how to bootstrap into research projects
- Few opportunities for students to shine
- Research, development, art itches not scratched!

Solution!

- Offer student groups that fit your interest
- Students can register as “group meeting” or “research project”
- Meet in the evenings so scheduling easy
- Students can register over and over, choosing bigger projects
- 3 groups founded in ‘01

200 Students Can’t Be Wrong! : GamesCrafters
What is “Game Theory”?

Combinatorial
- Sprague and Grundy’s 1939 *Mathematics and Games*
- Board games
- Nim, Domineering, dots and boxes
- Film: *Last Year in Marienbad*
- Complete info, alternating moves
- Goal: Last move

Computational
- R. C. Bell’s 1988 *Board and Table Games from many Civilizations*
- Board games
- Tic-Tac-Toe, Chess, Connect 4, Othello
- Film: *Searching for Bobby Fischer*
- Complete info, alternating moves
- Goal: Varies

Economic
- von Neumann and Morgenstern’s 1944 *Theory of Games and Economic Behavior*
- Matrix games
- Prisoner’s dilemma, auctions
- Film: *A Beautiful Mind* (about John Nash)
- Incomplete info, simultaneous moves
- Goal: Maximize payoff

200 Students Can’t Be Wrong! : GamesCrafters
What board games do you mean?

- No chance, such as dice or shuffled cards
- Both players have complete information
 - No hidden information, as in Stratego & Magic
- Two players (Left & Right) usually alternate moves
 - Repeat & skip moves ok
 - Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or …
Basic Definitions

- Games are graphs
 - Position are nodes
 - Moves are edges
- We strongly solve game by visiting every position
 - “Playing” every game ever
- Each position is (for player whose turn it is)
 - Winning (∃ losing child)
 - Losing (All children winning)
 - Tieing (∅ losing child, but ∃ tieing child)
 - Drawing (can’t force a win or be forced to lose)

200 Students Can’t Be Wrong! : GamesCrafters
Example: Tic-Tac-Toe

- **Rules (on your turn):**
 - Place your X or O in an empty slot on 3x3 board
- **Goal**
 - If your make 3-in-a-row first in any row / column / diag, win
 - Else if board is full with no 3-in-row, tie
- **Misère is tricky**
 - 3-in-row LOSES
 - Pair up and play now, then swap who goes 1st

Values Visualization for Tic-Tac-Toe
Tic-Tac-Toe Answer Visualized!

- Recursive Values Visualization Image
- Misère Tic-tac-toe
 - Outer rim is position
 - Inner levels moves
 - Legend
 - Lose
 - Tie
 - Win

Misère Tic-Tac-Toe 2-ply Answer
Computational Game Theory

- **Large games**
 - Can theorize strategies, build AI systems to play
 - Can study endgames, smaller version of orig
 - Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.
 - Can put 18 years into a game [Schaeffer, Checkers]

- **Small-to-medium games**
 - Can have computer **strongly** solve and…
 - Play against it and teach us strategy
 - Allow us to test our theories on the database, analysis
 - Analyze human-human game and tell us where we erred!
 - Big goal: *Hunt Big Game* – those not solved yet
 - I wrote GAMESMAN in 1988 (almost 20 yrs ago!), the basis of my GamesCrafters research group

200 Students Can’t Be Wrong! : GamesCrafters
GamesCrafters

- Undergraduate Computational Game Theory Research Group
- 140 students since 2001
 - We now average 40/semester!
 - They work in teams of 2+
- Most return, take more senior roles (sub-group team leads)
 - Maximization (bottom-up solve)
 - Oh, DeepaBlue (parallelization)
 - GUI (graphical interface work)
 - Retro (GUI refactoring)
 - Architecture (core)
 - New/ice Games (add / refactor)
 - Documentation (games & code)

200 Students Can't Be Wrong! : GamesCrafters
GamesCrafters

- Projects span CS areas
 - AI: Writing “intelligent” players
 - DB: How do we store results?
 - HCI: Implementing interfaces
 - Graphics: Values visualizations
 - SE: Lots of SE juice here, it’s big!
 - Defining & implementing APIs
 - Managing open source SW
 - OS: We have our own VM
 - Also eHarmony & net DB
 - PL: We’re defining languages to describes games and GUIs
 - THY: Lots of combinatorics here: position & move hash functions
- Perennial Open Day favorite!
- “Research and Development can be fun?!?”

200 Students Can't Be Wrong! : GamesCrafters
Alumni Feedback

- **Student feedback (2006 Student report)**
 - **Problem:**
 - "Undergrads find it hard to participate in research"
 - **Solution:**
 - "Create more activities like [Dan’s groups]"

- "I learned more about real software engineering in GamesCrafters than in my CS classes combined”

- "It pulled together all of the theoretical concepts from the various CS classes in providing my first practical application of my degree. Everything I learned in class was also present in GamesCrafters.”

- "The experience prepared me for a career in software development in ways that my CS classes never could."

- "GamesCrafters was the defining institution of my undergraduate career at Cal.”
Conclusion

- **GamesCrafters**
 - 200 Alumni
 - 65 Games
 - Almost 250K LoC
 - GAMESMAN open source, download!

- **Meta take-away**
 - Think of itches you need scratching; form an undergrad group!
 - Ruby on Rails
 - ACM Prog. Contest
 - … you fill in the blank!

200 Students Can't Be Wrong! : GamesCrafters