Today you’re going to learn about the game theory research and development that I do at UC Berkeley.

tinyurl.com/PKUgame
Computational Game Theory

- **History**
- **Definitions**
 - Game Theory
 - What Games We Mean
 - Win, Lose, Tie, Draw
 - Weakly / Strongly Solving
- **Gamesman**
 - Dan’s Undergraduate R&D Group
 - Demo!!
- **Future**
Computer Science … A UCB view

- **CS research areas:**
 - Artificial Intelligence (AI)
 - Biosystems & Computational Biology
 - Computer Architecture & Engineering
 - Database Management Systems
 - Graphics & Visual Computing
 - Human-Computer Interaction
 - Operating Systems & Networking
 - Programming Systems
 - Scientific Computing
 - Security
 - Theory
 - …
The Turk (1770)

- A Hoax!
- Built by Wolfgang von Kempelen
 - to impress the Empress
- Could play a strong game of Chess
 - Thanks to Master inside
- Toured Europe
 - Defeated Benjamin Franklin & Napoleon!
- Burned in an 1854 fire
 - Chessboard saved…
Claude Shannon’s Paper (1950)

- The “Father of Information Theory”
 - Founded the digital computer
 - Defined fundamental limits on compressing/storing data
- Wrote “Programming a Computer for Playing Chess” paper in 1950
 - All chess programs today have his theories at their core
 - His estimate of # of Chess positions called “Shannon #”
 - Now proved $< 2^{155} \sim 10^{46.7}$
Deep Blue vs Garry Kasparov (1997)

- Kasparov World Champ
- 1996 Tournament – Deep Blue
 - First game DB wins a classic!
 - But DB loses 3 and draws 2 to lose the 6-game match 4-2
 - In 1997 Deep Blue upgraded, renamed “Deeper Blue”
- 1997 Tournament – Deeper Blue
 - GK wins game 1
 - GK resigns game 2
 - even though it was draw!
 - DB & GK draw games 3-5
 - Game 6 : 1997-05-11 (May 11th)
 - Kasparov blunders move 7, loses in 19 moves. Loses tournament 3 ½ - 2 ½
 - GK accuses DB of cheating. No rematch.
- Defining moment in AI history
What is “Game Theory”?

Combinatorial
- Sprague and Grundy’s 1939 Mathematics and Games
- Board games
- Nim, Domineering, dots and boxes
- Film: *Last Year in Marienbad*
- Complete info, alternating moves
- Goal: Last move

Computational
- R. C. Bell’s 1988 Board and Table Games from many Civilizations
- Board games
- Tic-Tac-Toe, Chess, Connect 4, Othello
- Film: *Searching for Bobby Fischer*
- Complete info, alternating moves
- **Goal: Varies**

Economic
- von Neumann and Morgenstern’s 1944 *Theory of Games and Economic Behavior*
- Matrix games
- Prisoner’s dilemma, auctions
- Film: *A Beautiful Mind* (about John Nash)
- **Incomplete** info, simultaneous moves
- Goal: Maximize payoff
What “Board Games” do you mean?

- No chance, such as dice or shuffled cards
- Both players have complete information
 - No hidden information, as in Stratego & Magic
- Two players (Left & Right) usually alternate moves
 - Repeat & skip moves ok
 - Simultaneous moves not ok
- The game can end in a pattern, capture, by the absence of moves, or ...
GamesCrafters

- We **strongly** solve abstract strategy games and puzzles
 - 70 games / puzzles in our system
 - Allows perfect play against an opponent
 - Ability to do a post-game analysis
What’s in a Strong Solution

- For every position
 - Assuming alternating play
 - Value …
 (for player whose turn it is)
 - Winning (∃ losing child)
 - Losing (All children winning)
 - Tieing (!∃ losing child, but ∃ tieing child)
 - Drawing (can’t force a win or be forced to lose)
 - Remoteness
 - How long before game ends?
What did you mean “strongly solve”?

Wargames (1983)
1. Every year computer power (speed, storage) is growing exponentially, so eventually they’ll be able to strongly solve the world’s board games.

2. I’m happy when a game is strongly solved.

The English grandmaster Nigel Short says that chess computers, which now regularly beat the top human players, are taking away some of the mystery of the game. He likens them to “chainsaws chopping down the Amazon.”
Weakly Solving A Game (Checkers)

- **Master:** main line of play to consider
- **Workers:** positions to search
- **Endgame databases (solved)**

Log of Search Space Size
Strong Solving Example: 1,2,…,10

- **Rules (on your turn):**
 - Running total = 0
- **Rules (on your turn):**
 - Add 1 or 2 to running total
- **Goal**
 - Be the FIRST to get to 10
- **Example**
 - Ana: “2 to make it 2”
 - Bob: “1 to make it 3”
 - Ana: “2 to make it 5”
 - Bob: “2 to make it 7” → photo
 - Ana: “1 to make it 8”
 - Bob: “2 to make it 10” I WIN!
Example: Tic-Tac-Toe

- **Rules (on your turn):**
 - Place your X or O in an empty slot on 3x3 board

- **Goal**
 - If your make 3-in-a-row first in any row / column / diag, win
 - Else if board is full with no 3-in-row, tie

- **Misère is tricky**
 - 3-in-row LOSES
 - Pair up and play now, then swap who goes 1st
Tic-Tac-Toe Answer Visualized!

- Recursive Values Visualization Image
- Misère Tic-tac-toe
 - Outer rim is position
 - Inner levels moves
 - Legend
 - Lose
 - Tie
 - Win

Misère Tic-Tac-Toe 2-ply Answer
GamesCrafters (revisited)

- Undergraduate Computational Game Theory Research Group
- 300 students since 2001
 - We now average 20/semester!
 - They work in teams of 2+
- Most return, take more senior roles (sub-group team leads)
 - Maximization (bottom-up solve)
 - Oh, DeepaBlue (parallelization)
 - GUI (graphical interface work)
 - Retro (GUI refactoring)
 - Architecture (core)
 - New/ice Games (add / refactor)
 - Documentation (games & code)
Connect 4 Solved, Online!

- We’ve just finished a solve of Connect 4!!
- It took 30 Machines x 8 Cores x 1 weeks
- Win for the first player (go in the middle!)
 - 3,5 = tie
 - 1,2,6,7 = lose
- Come play online!
Future

- Board games are **exponential**
 - So has been the progress of the speed / capacity of computers!
 - Therefore, every few years, we only get to solve one more “ply”

- One by one, we’re going to solve them and/or beat humans
 - We’ll never solve some
 - E.g., hardest game: Go

- Strongly solving *(GamesCrafters)*
 - We visit EVERY position, and know value of EVERY position
 - E.g., Connect 4

Go’s search space ~ 3^{361}