Everything You Always Wanted To Know about Game Theory* *but were afraid to ask

Dan Garcia, UC Berkeley
David Ginat, Tel-Aviv University
Peter Henderson, Butler University

What is “Game Theory”? Combinatorial / Computational / Economic

- Combinatorial
 - Sprague and Grundy’s 1939 Mathematics and Games
 - Board (table) games
 - Nim, Domineering
 - Complete info, alternating moves
 - Goal: Last move
- Computational
 - R. Bell and M. Cornelius’ 1988 Board Games around the World
 - Tic-Tac-Toe, Chess
 - Complete info, alternating moves
 - Goal: Varies
- Economic
 - von Neumann and Morgenstern’s 1944 Theory of Games and Economic Behavior
 - Matrix games
 - Prisoner’s dilemma
 - Incomplete info, simultaneous moves
 - Goal: Maximize payoff

Know Your Audience…

- How many have used games pedagogically?
- What is your own comfort level with GT?
 (hands down = none, one hand = ok; two hands = you could be teaching this session)
 - Combinatorial (Berlekamp-ish)
 - Computational (AI, Brute-force solving)
 - Economic (Prisoner’s dilemma, matrix games)

EYAWTKAGT*bwata
Here’s our schedule:

(“GT” = “Game Theory”)

- Dan: Overview, Combinatorial GT basics
- David: Combinatorial GT examples
- Dan: Computational GT
- Peter: Economic GT & Two-person games
- Dan: Summary & Where to go from here
 (All of GT in 75 min? Right!)

Why are games useful pedagogical tools?

- Vast resource of problems
 - Easy to state
 - Colorful, rich
 - Use in lecture or for projects
 - They can Use their projects when they’re done
 - Project Reuse -- just change the games every year!
 - Algorithms, User Interfaces, Artificial Intelligence, Software Engineering

“Every game ever invented by mankind, is a way of making things hard for the fun of it!”
 – John Ciardi

What is a combinatorial game?

- Two players (Left & Right) alternating turns
- No chance, such as dice or shuffled cards
- Both players have perfect information
 - No hidden information, as in Stratego & Magic
- The game is finite – it must eventually end
- There are no draws or ties
- Normal Play: Last to move wins!
Combinatorial Game Theory
The Big Picture

- Whose turn is not part of the game
- SUMS of games
 - You play games \(G_1 + G_2 + G_3 + \ldots \)
 - You decide which game is most important
 - You want the last move (in normal play)
 - Analogy: Eating with a friend, want the last bite

Classification of Games

- Impartial
 - Same moves available to each player
 - Example: Nim
- Partisan
 - The two players have different options
 - Example: Domineering

Nim: The Impartial Game pt. I

- Rules:
 - Several heaps of beans
 - On your turn, select a heap, and remove any positive number of beans from it, maybe all
- Goal
 - Take the last bean
- Example w/4 piles: (2,3,5,7)
- Who knows this game?

Nim: The Impartial Game pt. II

- Dan plays room in (2,3,5,7) Nim
- Ask yourselves:
 - Query:
 - First player win or lose?
 - Perfect strategy?
 - Feedback, theories?
- Every impartial game is equivalent to a (bogus) Nim heap

Nim: The Impartial Game pt. III

- Winning or losing?
 - Binary rep. of heaps
 - Nim Sum = XOR
 - Zero = Losing 2nd P win
- Winning move?
 - Find MSB in Nim Sum
 - Find heap w/1 in that place
 - Invert all heap’s bits from sum to make sum zero

Domineering: A partisan game

- Rules (on your turn):
 - Place a domino on the board
 - Left places them North-South
 - Right places them East-West
 - Goal
 - Place the last domino
- Example game
- Query: Who wins here?
Combinatorial Game Theory

The Basics I - Game definition

- A game, G, between two players, Left and Right, is defined as a pair of sets of games:
 - $G = \{ G^L | G^R \}$
 - G^L is the typical Left option (i.e., a position Left can move to), similarly for Right.
 - G^L need not have a unique value
 - Thus if $G = \{ a, b, c, \ldots | d, e, f, \ldots \}$, G^L means a or b or c or d or e or f or ...

Combinatorial Game Theory

The Basics II - Examples: 0

- The simplest game, the Endgame, born day 0
 - Neither player has a move, the game is over
 - $\{ \emptyset | \emptyset \} = \emptyset$, we denote by 0 (a number!)
 - Example of P, previous/second-player win, losing
 - Examples from games we’ve seen:

<table>
<thead>
<tr>
<th>Nim</th>
<th>Domineering</th>
<th>Game Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

Combinatorial Game Theory

The Basics II - Examples: 1

- Another simple game, 1, born day 1
 - Left wins no matter who starts
 - $\{ 0 | 0 \} = 1$, this game is a number
 - Called a Left win. Partisan games only.
 - Examples from games we’ve seen:

<table>
<thead>
<tr>
<th>Nim</th>
<th>Domineering</th>
<th>Game Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Combinatorial Game Theory
The Basics II - Examples: -1

- Similarly, a game, -1, born day 1
 - Right wins no matter who starts.
 - \{ | \} = -1, this game is a number.
- Called a Right win. Partisan games only.
- Examples from games we've seen:
 - Nim
 - Domineering
 - Game Tree

<table>
<thead>
<tr>
<th>Nim</th>
<th>Domineering</th>
<th>Game Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right wins</td>
<td>Left wins</td>
<td></td>
</tr>
</tbody>
</table>

Combinatorial Game Theory
The Basics III - Outcome classes

- With normal play, every game belongs to one of four outcome classes (compared to 0):
 - Zero (=)
 - Negative (<)
 - Positive (>)
 - Fuzzy (||), incomparable, confused

<table>
<thead>
<tr>
<th>Zero</th>
<th>Negative</th>
<th>Positive</th>
<th>Fuzzy</th>
</tr>
</thead>
<tbody>
<tr>
<td>{</td>
<td>} = 0</td>
<td>{ -1</td>
<td>} = -1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Left starts</th>
<th>Right starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>and L has winning strategy</td>
<td>and R has winning strategy</td>
</tr>
</tbody>
</table>

Combinatorial Game Theory
The Basics IV - Values of games

- What is the value of a fuzzy game?
 - It's neither > 0, < 0 nor = 0, but confused with 0.
 - Its place on the number scale is indeterminate.
 - Often represented as a "cloud".

- Values:
 - Zero
 - Negative
 - Positive
 - Fuzzy

Combinatorial Game Theory
The Basics V - Final thoughts

- There's much more!
 - More values
 - Up, Down, Tiny, etc.
 - How games add
 - Simplicity, Mex rule
 - Dominating options
 - Reversible moves
 - Number avoidance
 - Temperatures

- Normal form games
 - Last to move wins, no ties
 - Whose turn not in game
 - Rich mathematics
 - Key: Sums of games
 - Many (most) games are not normal form!
 - What do we do then?
 - Computational GT!

And now over to David for more Combinatorial examples…

<table>
<thead>
<tr>
<th>0nd now for over to David for more</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial examples…</td>
</tr>
</tbody>
</table>
Computational Game Theory (for non-normal play games)

- Large games
 - Can theorize strategies, build AI systems to play
 - Can study endgames, smaller version of original
 - Examples: Quick Chess, 9x9 Go, 6x6 Checkers, etc.

- Small-to-medium games
 - Can have computer solve and teach us strategy
 - I wrote a system called GAMESMAN which I use in CS0 (a SIGCSE 2002 Nifty Assignment)

How do you build an AI opponent for large games?

- For each position, create Static Evaluator
- It returns a number: How much is a position better for Left?
 - (+ = good, − = bad)
- Run MINIMAX (or alpha-beta, or A*, or …) to find best move

Use of games in projects (CS0)

Language: Scheme & C

- Every semester...
 - New games chosen
 - Students choose their own graphics & rules (i.e., open-ended)
 - Final Presentation, best project chosen, prizes
- Demonstrated at SIGCSE 2002 Nifty Assignments
And now over to Peter…

- Two player games
- More motivation
- Prisoner’s Dilemma

Summary

- Games are wonderful pedagogic tools
 - Rich, colorful, easy to state problems
 - Useful in lecture or for homework / projects
 - Can demonstrate so many CS concepts
- We’ve tried to give broad theoretical foundations & provided some nuggets…

Resources

- www.cs.berkeley.edu/~ddgarcia/eyawtkagtbwata/
- www.cut-the-knot.org
- R. Bell and M. Cornelius: *Board Games around the World* [1988]
- K. Binmore: *A Text on Game Theory* [1992]