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Introduction

“Every game ever invented by mankind, is a way of making
things hard for the fun of it!” –John Ciardi

At recent SIGCSE conferences, there appeared to be a
refreshing revival of interest in game theory as a valuable
pedagogical tool for educators [4,5]. Games can serve as an
excellent resource for CS0, CS1, networking, user interface and
software engineering projects. Games can be utilized to
motivate students, enrich their intuition, and illustrate
fundamental principles of algorithm design such as
exploration of regularities, modularity, correctness, and
efficiency. Many CS instructors look for ways to motivate,
improve intuition, and illustrate the subject matter they teach,
and games are a wonderful means of doing so.

Unfortunately, not everyone in our community has taken
formalized courses in the subject, and many may feel they lack
the prerequisites to initiate their own “nifty” game assignment
or example. This special session hopes to provide enough of a
basic tutorial of game theory (and many of its variants) that
attendees will be able to use it in their own pedagogy with
confidence. In this panel, we will present basic theory through
numerous examples, discuss didactic aspects of games, and try
to identify curricular topics for illustration with mathematical
games. Participants will be encouraged to present examples of
successful incorporation of games into their instruction.

We have chosen to divide the broad field of game theory into
three distinct categories: economic, combinatorial and
computational. Briefly, economic game theory concerns matrix
games with simultaneous moves, e.g., the famed Prisoner’s
Dilemma problem. Combinatorial game theory is founded
upon the rich mathematics for finite, two-person, complete
information games and their sums, e.g., Nim and Dots & Boxes.
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Computational game theory is our own classification of two-
person games that require computation to solve and/or create a
worthy opponent, such as Chess, Checkers and Go.

Peter Henderson – Economic Game Theory

The 2001 blockbuster film A Beautiful Mind highlighted the
life of John Nash, the Nobel Prize-winning economist, and
introduced the nation to the benefits of economic game
theory. In fact, the field traces its roots back to von Neumann
and Morgenstern’s book: The Theory of Games and Economic
Behavior. It introduced the restricted idea of a “zero-sum
game”, in which any benefit to one player must be balanced by
a loss of the same amount by the opposition. It also classified
games as either cooperative, in which games may have many
players who may or may not collude, and non-cooperative, in
which players are strictly competitive. John Nash became
famous for relaxing the zero-sum restriction they imposed for
non-cooperative games and introduced the idea of (what i s
now called) a Nash equilibrium describing mixed strategies
[3].

One of the most famous examples of this rich theory is the
Prisoner’s Dilemma problem, which describes a situation in
which two players (we’ll name bold and italic) are accused of a
crime, placed in separate cells and asked to confess. Each
prisoner can independently decide to cooperate (remain silent)
or defect (turn the other in), and is asked to choose
simultaneously. Figure 1 illustrates the payoff matrix for the
four possible outcomes described below – the numbers
represent how many years each will spend in prison for that
particular outcome. If both cooperate, both will serve only 3
years in prison. If both defect (ideal for the police), both serve
5 years in prison. If one defects and one cooperates, the one
who defects is set free (0 years in prison) and the one who
remained silent serves 6 years, the harshest penalty.

The behavior that emerges from this when players are asked to
play some unknown consecutive number of times is, simply
put, fascinating. Often students start out cooperating, then one
defects, and then the other usually follows to defect quickly.
However, if both continue to defect, they suffer the most
cumulative punishment (5+5=10 years) than any other
outcome. It is interesting to watch who is willing to cooperate
given that their opponent has continued to defect on them in
the recent past.

Cooperate Defect
Cooperate 3, 3 6, 0

Defect 0, 6 5, 5

Figure 1 – The Prisoner’s Dilemma matrix.



How might one turn this problem into a nifty project?
Students in CS1 or CS3 could be provided the networking
module and asked to write a program to play the game many
times with random opponents in a lab in succession and
tabulate the scores. Networking and software engineering
classes could be asked to write the client and server
architecture  to support the play.

David Ginat – Combinatorial Game Theory

In 1982, Elwyn Berlekamp, John Conway and Richard Guy
published their landmark Winning Ways for your
Mathematical Plays, which has since become the accepted
reference to the field of combinatorial game theory [2].
Although it provides insight and analysis on a wide range of
games, the book focuses mostly on “normal play” games: two-
players moving alternately on a position with complete
information (both players know what is going on at all times).
In these games, there is no chance and the last player to move
wins. They developed a rich mathematics to describe the
games, and in doing so introduced hundreds of interesting
and innovative games to use as illustrations.

One such game is Nim, whose rules are quite simple. The game
begins with several piles of beans, often with different
numbers of beans in each pile. Players take turns removing as
many beans as they wish (but at least one) from a single pile.
The player to remove the last bean wins. Nim is fascinating for
a couple of reasons. First, it is one of the few games for which
there exists an easy way to calculate whether it is better to play
first (or second), and if first, what move will guarantee victory.
The technique involves calculating the binary representations
of the number of beans in each pile. What a sure-fire way to
motivate the topic! You can guarantee they’ll learn a foolproof
method of winning every Nim game they’ll ever play (given
that they have the choice to move first or second). Second,
Nim forms the foundation of the impartial (both players have
equal moves available to them) theory of games, which has the
surprising result that every impartial game is equivalent to a
game of Nim with a single (possibly zero) pile of beans.

Combinatorial games serve as excellent project fodder, and
help highlight that mathematics is more powerful than brute
force in many cases. What makes these games so wonderful i s
that there can be quite interesting subtleties and strategies for
games of very small size [7]. Those of us who have taught
using games in our curriculum have found that they serve as
excellent motivators for students to investigate the
mathematics behind the play, always a rewarding result. One
example of a curriculum-topic in which this has been
demonstrated is that of program design and verification [6].

Daniel D. Garcia – Computational Game Theory

The field of “computational” game theory is meant to
encompass a wide variety of games that lend themselves to
brute force or artificially intelligent opponents. Here we often
distill the combinatorial set of values for a game to three
cases: win, lose or tie. With small games that can be
exhaustively searched, we are able to search the game tree in
its entirety and provide a perfect opponent. With larger games,
it is necessary to create static evaluators that return how good
a position is for a particular player. The system then uses this
information to control a limited search of the game tree to
determine the best computer’s move.

Robbie Bell and Michael Cornelius have provided a great
reference for board games played around the world that could
be used in these systems [1]. These games serve as some of the
most interesting projects and examples for courses in artificial
intelligence, networking, software engineering and graph
theory.

Conclusion

Games provide a wonderfully rich and fertile source of new
programming projects, illustrations of fundamental CS
principles, and motivational problems. The goal of this special
session is to bring those attending “onto the same square”,
and provide them with the tools to tap this valued resource.
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