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1 Introduction

In this section we discuss the a retinal representation which utilizes geometric,
or ray optics to reveal how well parallel light comes to a crisp focus on the retina
of the eye. We make use of two standard techniques common for describing the
quality of optical systems.

2 Methods

We wish to measure how well the corneas focus light from a single, distant source
like a bright star. One standard technique is called the point spread function
(PSF), which is the retinal energy distribution from a point source [2, 11, 52,
57, 87, 115, 116].

2.1 Point Spread Function

We begin the calculation of the PSF by ray tracing light through the system and
onto the retina, as others have done [16, 17, 37, 45, 76, 77, 98, 108]. We assume
the point is placed at optical infinity, so that the incoming light rays are parallel.
We also assume that the retina is planar, a reasonable approximation given that
our entire retinal region of interest (ROI) is 0.64 mm wide and deviates in height
from a spherical retinal model by only 3 µm. The PSF is the distribution, or
“spread”, of light at the retina. Figure 1 illustrates light rays showering a cornea
and forming a PSF on the retina.

We generate a normalized PSF (denoted PSF), which is simply our PSF
divided by the number of rays Nr which land:

PSF(x, y) =
PSF(x, y)

Nr
(1)

and typically plot it as a height field for analysis, as in the example from Figure 2.
The PSF for an ideal optical system (like a perfect ellipsoid) would have a
very small, localized region of height one and zero elsewhere, as we will see in
Figure ??. The Strehl ratio is the relative peak intensity of an optical system’s
PSF with that of an ideal, aberration-free system. As we are only dealing
with geometric optics, we define an equivalent concept, the geometric Strehl
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Figure 1: Light from a point source is refracted to form the PSF.

ratio, which we will call Strehlg. Since we normalize our PSF, it is simply the
maximum value of our PSF.

2.1.1 Sampling

To create the PSF, we must shower the cornea with light rays and trace them
all as they are refracted toward the retina. Ideally, every microscopic patch of
the cornea would be pierced with a light ray, but for computation purposes,
we must sample the continuous surface into discrete corneal points. We use a
crosshatched sampling pattern as shown in Figure 3. We typically sample the
corneas at a 100×100 resolution (with an inner 99×99 group), which produces
19,801 samples. As most corneal reconstructions are round, approximately 78%
or 15,000 of those samples produce valid rays.

We introduce a simulated pupil located at the front surface of the eye. As
we reduce the diameter of our pupil, we subsequently reduce the number of rays
that are allowed to pass. This is consistent with our model that the samples
represent a predefined flux of incoming light radiation, and culling the peripheral
rays with our pupil reduces that flux accordingly. The simple expression for rays
allowed to pass is that their distance from the CT axis be less than our pupil
radius. That is, if the ray pierces the z = 0 plane with polar coordinates (r, θ),
the rays allowed to enter are those satisfying the expression

r < rpupil. (2)

At each sample in our pupil, we query point and derivative information
necessary for determining the refraction into the eye. It is here that we apply
our simulated spectacle correction. We found that simple aberrations based
on astigmatism dominated our distribution, so we compensate by placing a
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Figure 2: A height field representation of a sample PSF.
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Figure 3: The crosshatched sampling pattern used to sample the cornea. Rays
from the infinite light source pass through these samples and are refracted into
the eye.

simulated infinitely thin contact lens on the cornea to correct for basic cylinder.
We search to find the optimal cross-cylinder lens that gives the best retinal
focus, which we discuss shortly in Section ??.

The corrected ray then enters the corneal surface according to Snell’s law.
After the rays pass through the cornea and eye, they intersect the retinal
“plane”, which is a variable distance away. This distance is the third and final
parameter in our spectacle correction optimization.

We then sample the retinal plane, dividing it into 257 × 257 square buckets
which are 2.5 µm, or roughly one-half minute on a side. This produces a square
retinal “patch” which is 0.6425 mm on a side. Figure 4 shows a ray striking the
retina and landing within one of the sample buckets.

Every time a ray lands in a sample, it contributes one unit to our histogram.
The accumulation of all the rays forms the overall PSF energy distribution.

3 See What You See : Simulating Corneal Vi-
sual Acuity

4 Introduction

Our goal with this work is to simulate the corneal contribution to visual acuity.
In the previous chapter we showed retinal representations of corneal acuity,
but these fail to capture what the patient actually sees. We utilize a modified
Snellen eye chart and a sample outdoor scene as our input, and image how they
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Figure 4: A refracted ray lands in one of the sample buckets on our retinal
plane.

would be seen with different patient’s corneas and pupil sizes to achieve a fairly
accurate first-person representation of visual acuity.

5 Methods

The use of ray tracing to determine the PSF and the resulting retinal blur for
images such as Snellen charts is not new. Section ?? discusses several prominent
researchers who have created sophisticated models and optical bench software
tools using ray tracing for evaluation of optical performance.

We choose to implement the technique as part of our software suite to provide
the final stage of visualization, the simulation of optical acuity through the
cornea in question. In this section we’ll discuss the process of calculating the
PSF, calibrating it with an image, and convolving them together to form the
final blurred result.

It is important to note the assumptions and limitations of this technique
for the simulation of visual acuity. First, it assumes that all incoming light is
parallel, having arrived from optical infinity. Thus, we can only simulate what
a patient would see while looking at something reasonably far away. Second,
the computational model described in Section ?? is very simplistic and does not
take other components of the eye into account, like the lens, vitreous humor
or corneal layers. This means the many effects they induce (e.g., ciliary bloom
and lens glare) are completely ignored. Third, the pupil only expands to large
diameters in extremely low light situations, so simulating the aberrations with
an 8 mm pupil on a daylight scene is quite artificial. Finally, as all of our PSF
construction uses ray tracing and geometric optics, we ignore the important
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Figure 5: Simulation of an eye viewing an image exactly as it was seen by the
camera. The centers of projection are aligned and the image is scaled so that
one pixel on the image maps to one sample on the PSF.

effects of diffraction, which is the limiting acuity factor for small pupils.

5.1 Normalized Point Spread Function

We begin with the normalized point spread function, PSF, a computed his-
togram of retinal energy from a distant point source of light as discussed in Sec-
tion 2.1. This serves as the “impulse response” of the patient’s optical system.
As we mentioned, we sample the retina at half-minute (2.5 micron) intervals;
this will be important in the following section on image calibration.

5.2 Image Calibration

When we wish to apply a filter to an image, it is critical that the parameters
of the filter be tuned to the spatial frequencies of the image. Our filter is the
PSF, which is sampled at half-minute intervals, producing a fine grid of retinal
energy distribution.

Again, we are given (or synthetically generate) an input image, and our goal
is to create a first-person simulation. There are two alternatives, simulating
the eye in the camera’s place, or simulating the patient viewing the image from
afar. Each of these will affect the calibration differently, and we discuss this in
the following sections.

5.2.1 Eye is the Camera

This is perhaps the most effective and convincing simulation, and the one we
use to simulate the patient seeing an eye chart in Section 6.1. Here we place the
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Figure 6: Simple geometry controls the relationship between an object’s dis-
tance (d), its image size (h) and the angle it subtends (θ). That relationship is
captured by the expression h = d tan θ.

eye where our camera was when the scene was captured on film as in Figure 5.
Before we can accurately simulate the blur the patient would see, we must assure
that they are calibrated together, as described below.

A photograph of a scene is taken, or one is synthetically generated. Real
or virtual camera information is recorded, e.g., lens, field of view, center of
projection, image plane distance, etc. The image is then digitized (or rendered)
at the same spatial frequency as our filter.

If we have control over the digitization and camera information, we simply
tune our sampling resolution to the correct value. If we do not have camera
information, but do have objects in our scene whose distance to the camera and
size we know accurately, we can still adjust our sampling as follows. We want
one pixel to be thirty seconds of arc. If an object is at a distance d from our
camera, this means (using the simple geometry from Figure 6) that:

h1 = d tan θ = d tan
(

1
2

1
60

π

180

)
≈ d 1.45444× 10−4 (3)

where h1 represents the distance in object space that we need for one pixel. If
an object’s size is h, then it should be h

h1
pixels high.

If we do not have either camera or object size and distance information, we
have no way to estimate how finely to sample our scene. When we do have
this information, but the image has already been digitized, then there are three
options. If the image is sampled at calibration density, we’re done. If the
image is sampled finer than that, then an intelligent bicubic interpolation can
be used to reduce the image size without significant loss. However, if the image
is sampled more coursely than calibration, we’re in trouble. We either have to
reduce the size of our filter or increase the size of our image. Either technique
will result in unacceptable artifacts.

If there is no calibrating camera or object information, and the image has
already been digitized, we cannot reliably put the eye in the camera. We could,
however, simulate what the patient would see if they were to visualize the digi-
tized photo on a computer monitor; this is discussed next.
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Figure 7: Simulation of an eye viewing a projected digitized image from afar.
The eye’s center of projection is placed at a distance d and the image is scaled
so that one pixel on the digital image maps to one sample on the PSF.

5.2.2 Patient Views Projected Digital Image

This technique, as shown in Figure 7, allows us to simulate what the patient
would see looking at an image from a fixed distance. It is most useful when we
do not have object information necessary for eye-is-the-camera calibration.

When images are viewed on monitors in a what-you-see-is-what-you-get
(WYSIWYG) fashion, they are represented at 72 dots per inch (DPI). This
means one pixel is 1

72 inch. Plugging in this value for h1 in Equation 3, we know
the distance d must be:

d =
h1

tan
(

1
2

1
60

π
180

) ≈ 95.5 inches ≈ 8 feet. (4)

Therefore, if we perform our filtering on an unmodified input image, the
result would be what a person would see viewing the picture on a monitor from
a distance of approximately 8 feet. This is the technique we employ with our
outdoor scene from Section 6.2.

5.3 Measuring Visual Acuity

Visual acuity is the measurement of the eye’s ability to resolve the form and
detail of an object. It is most commonly determined by testing the ability of
the patient to read standard letters at a fixed distance [10, 25].

5.3.1 Snellen Notation

In 1862 Snellen devised a system for measuring acuity which has since become
a fundamental clinical technique for acuity assessment [25]. The smallest detail
of an object an eye can see is called the minimum angle of resolution (MAR) of
the eye. The Snellen fraction is the reciprocal of the MAR. The test is usually
performed at 20 ft (6 m), an acceptable approximation to optical infinity.
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Figure 8: A typical Snellen letter.

MAR Snellen decimal notation Snellen fraction
0.5 2 20/10
1 1 20/20
2 1/2 20/40
4 1/4 20/80
8 1/8 20/160
...

...
...

Table 1: The relationship between MAR and Snellen notations.

On a typical chart, letters are scaled so that each will subtend an angle of
5 minutes at a given distance. The details of the letters themselves make an
angle of 1 minute of arc, as shown in the classic “E” in Figure 8. The letters are
then labeled by this distance, e.g., the “20-foot” letter makes a total angle of
5 minutes at a distance of 20 feet. The classic fraction is recorded as the ratio
of the testing distance and the label of the smallest letter a patient can resolve.
Thus, if a patient at 20 feet is only able to read the “100 foot” letter, their vision
would be classified as “20/100”. Table 1 shows the relationship between MAR
and Snellen notation. A historical note: one minute of arc became a standard
in the days of early astronomers who determined it to be the minimum angular
separation for two different stars to be perceived as distinct [25].

5.3.2 Simulated Snellen Eye Chart

Tumbling E charts like the one shown in Figure 9 are often used for preliterate
children. We choose to use a modified version of this instead of a standard
Snellen chart since rendering the letter “E” to an image requires no anti-aliasing
as would letters with curved edges. We are able to create Es down to 5×5 pixels
with no loss.

Our test acuity image is shown in Figure 10, which has been calibrated so
that each pixel is thirty seconds. This is the spacing between the bars of the
smallest E, used for testing 20/10 acuity. We include Es which double in size
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Figure 9: A typical acuity chart with tumbling Es used for acuity assessment
of preliterate children. This chart is especially useful for us since rasterization
requires no anti-aliasing as would a chart with curved-edge letters.
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Figure 10: The image we use for our acuity simulation. The size of the Es ranges
from 20/10 on the left to 20/160 on the right. The fan pattern on the far right
is used to test for astigmatism.

Figure 11: The image we use for our outdoor scene simulation, a photograph of
U. C. Berkeley’s Campanile courtesy of Paul Debevec.

up to 20/160. We add a fan pattern to test for astigmatism, whose direction is
determined by the bars perceived as least blurred.

5.3.3 Outdoor Scene

As shown in Figure 11, the input image is a crisp low dynamic range digital
photograph of U. C. Berkeley’s Campanile tower, courtesy of Paul Debevec. It
has clearly defined edges and a full-range luminance histogram. The simulations
we present are what a patient would see when looking at the full 250×500 pixel
image on a 72-dpi computer screen at a distance of 8 feet. The blur is identically
computed for each of the R, G and B channels in the image, so there is no
chromatic aberration in the simulation. There was no digital processing done
on the input image; every pixel was simply copied from the original PhotoCD,
down to the small smudge on the right of the tower.
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Figure 12: Instead of convolving the PSF with our image (shown in grey), we
multiply their Fourier transforms and return the inverse Fourier transformation
(shown in black).

5.4 Convolution

Now that we have our input images and PSF “impulse response” distribution,
we simply need to convolve them together to form the blurred output images.
We make use of the convolution theorem which tells us the convolution in the
spatial domain can be obtained by taking the inverse Fourier transform of the
products of the spectra in the frequency domain, as shown in Figure 12. That
is,

Imageblur(x, y) = PSF(x, y) ∗ Image(x, y)
= F−1

{
F
{

PSF(x, y)
}
×F {Image(x, y)}

}
(5)

where F is the Fourier transform and F−1 is the inverse Fourier transform [34].

6 Results

We compile the results of simulating all of the corneas with pupil sizes of 2, 4
and 8 mm viewing both our test images in Section ??, and discuss the overall
results in the following sections.

6.1 Snellen Eye Chart

As anticipated, the corneas have much better vision with small pupils than
with large. The regular corneas (those without PRK, keratoconus or monocular
diplopia) have excellent spectacle-corrected vision with no astigmatism even up
to 8 mm; acuity is estimated to be between 20/10 and 20/40. The problem
eyes have acute loss of contrast and acuity, sometimes even with small pupils.
A telltale ghost image forms with our 8 mm monocular diplopia eye, situated
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about 4
3

◦ above the primary image. Overall acuity ranges at around 20/80 for
the PRK and diplopic eye to worse than 20/160 for our keratoconic eye.

6.2 Outdoor Scene

The aberrations that we witnessed with the simulated Snellen chart were more
mild than with our outdoor scene, since our scene did not have a comparable
degree of contrast and sharp edges, and thus was more forgiving. In general,
it was harder to differentiate the blur from different corneas, as the results
all seemed to converge with large pupils. The most striking feature was the
“muddying” of the scene, as everything in the interior of the tower blurred to
a dark grey. The ghost image was not as distinct for the diplopic eye as it had
been for our Snellen chart.

7 Conclusion

We presented a technique for the simulation of first-order visual acuity using
a precomputed normalized point spread function of the eye. We utilized two
sample input images: a modified tumbling E Snellen chart with an astigmatic
test fan, and a sample full-color outdoor scene. Our results showed a fair ap-
proximation of visual acuity, with expected increased blur and loss of contrast
for larger pupils as peripheral aberrations became more dominant.
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[2] Pablo Artal, Javier Santamaŕia, and Julian Bescoós. Retrieval of wave
aberration of human eyes from actual point-spread-function data. J. Opt.
Soc. Am. A, 5:1201–1206, 1988.

[3] T. Y. Baker. Ray tracing through non-spherical surfaces. Proc. Phys.
Soc., 55:361, 1943.

[4] Brian A. Barsky, Stanley A. Klein, and Daniel D. Garcia. Gaussian power,
mean sphere, and cylinder representations for corneal maps with applica-
tions to the diagnosis of keratoconus. Invest. Ophthalmol. Vis. Sci, 37:558,
1996.

[5] Brian A. Barsky, Stanley A. Klein, and Daniel D. Garcia. Gaussian power
with cylinder vector field representation for corneal topography maps.
Optom. Vis. Sci, 74(11):917–925, 1997.

[6] Brian A. Barsky, Robert B. Mandell, and Stanley A. Klein. Corneal shape
illusion in keratoconus. Invest. Ophthalmol. Vis. Sci, 36(Suppl.):5308,
1995.

13



[7] John P. Beale Jr. No More Glasses (Or Contact Lenses). Doctors’ Oph-
thalmic Press, San Francisco, CA, 1986.

[8] James M. Beck, Rida T. Farouki, and John K. Hinds. Surface analysis
methods. IEEE Computer Graphics and Applications, 6(12):18–36, 1986.

[9] Michael W. Belin, David Litoff, Salvins J. Strods, Steven S. Winn, and
Richard S. Smith. The par technology corneal topography system. Re-
fractive and Corneal Surgery, 8:88–96, 1992.

[10] Peter D. Bergenske and Lynn E. Konkel. Training staff to measure visual
acuity. Optometric Economics, pages 46–51, Fall 1996.

[11] Frans J. J. Blommaert, Henny G. M. Heynen, and Jacques A. J. Roufs.
Point spread functions and detail detection. Spatial Vision, 2(2):99 – 115,
1987.

[12] Max Born and Emil Wolf. Principles of optics, 7th Edition. Cambridge
University Press, Cambridge, UK, 1980.

[13] Douglas Brenner. Modeling the cornea with the topographic modeling
system videokeratoscope. Optom. Vis. Sci, 74(11):895–898, 1997.

[14] britannica.com. Encyclopædia Britannica Online : Op-
tics : Lens Aberrations. http://www.britannica.com
/bcom/eb/article/5/0,5716,115155+29,00.html.

[15] Lucio Buratto. Corneal Topography : The Clinical Atlas. SLACK Incor-
porated, Thorofare, NJ, 1996.

[16] Jon J. Camp, Leo J. Maguire, Bruce M. Cameron, and Richard A. Robb.
A computer model for the evaluation of the effect of corneal topography
on optical performance. Am. J. Ophthalmol., 109:379–386, 1990.

[17] Jon. J. Camp, Leo J. Maguire, and Richard A. Robb. An efficient ray
tracing algorithm for modeling visual performance from corneal topog-
raphy. In First Conference on Visualization in Biomedical Computing,
pages 279–285, Atlanta, GA, May 22–25 1990. The Institute of Electrical
and Electronics Engineers, Inc., IEEE Computer Society Press.

[18] Charles Campbell. Corneal aberrations, monocular diplopia, and ghost
images: Analysis using corneal topographical data. Optom. Vis. Sci,
75(3):197–207, 1998.

[19] James Casey. Exploring Curvature. Vieweg, Germany, 1996.

[20] Jacob A. Corbin, Stanley A. Klein, and Corina van de Pol. Measuring
effects of refractive surgery on corneas using taylor series polynomials. In
Proceedings of Ophthalmic Technologies IX, San Jose, CA, January 23–29
1999. SPIE International Symposium on Biomedical Optics.

14



[21] A. M. de Beus and S. E. Brodie. Towards intrinsic representations of the
corneal surface. Invest. Ophthalmol. Vis. Sci, 35(Suppl):2197, 1994.

[22] Paul E. Debevec and Jitendra Malik. Recovering high dynamic range
radiance maps from photographs. In Proceedings of ACM SIGGRAPH
1997, pages 369–378, Los Angeles, CA, August 3–8 1997. SIGGRAPH,
Association of Computer Machinery, Inc.

[23] Steven A. Dingeldein and Stephen D. Klyce et al. Quantitative descrip-
tors of corneal shape derived from computer-assisted anaylsis of photok-
eratographs. Refractive and Corneal Surgery, 5(6):372–378, 1989.

[24] Manfred P. Docarmo. Differential Geometry of Curves and Surfaces.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

[25] J. Boyd Eskridge, John F. Amos, and Jimmy D. Bartlett. Clinical Proce-
dures in Optometry. J. B. Lippincott Company, Philadelphia, PA, 1991.

[26] Richard P. Feynman, Robert B. Leighton, and Matthew Sands. The Feyn-
man Lectures on Physics, Volume I. Addison-Wesley, Reading, MA, 1963.

[27] James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics : Principles and Practice, 2nd Edition. Addison-
Wesley Publishing Co., Reading, MA, 1990.

[28] Grant R. Fowles. Introduction to Modern Optics. Dover Publications,
Inc., New York, NY, 1989.

[29] Daniel D. Garcia, Brian A. Barksy, and Stanley A. Klein. Cwhatuc: A
visual acuity simulator. In Proceedings of Ophthalmic Technologies VIII,
SPIE International Symposium on Biomedical Optics, pages 290–298, San
Jose, CA, January 24–30 1998. SPIE.

[30] Daniel D. Garcia, Corina van de Pol, Stanley A. Klein, and Brian A.
Barsky. Wavefront coherence area for predicting visual acuity of post-prk
and post-park refractive surgery patients. In Proceedings of Ophthalmic
Technologies IX, SPIE International Symposium on Biomedical Optics,
San Jose, CA, January 23–29 1999. SPIE.

[31] Al Globus and Eric Raible. Fourteen ways to say nothing with scientific
visualization. IEEE Computer, pages 86–88, July 1994.

[32] Michael J. Goggin, Paul Kenna, and Frank Lavery. Haze following pho-
torefractive and photoastigmatic refractive keratectomy with the nidek
ec5000 and the summit excimed uv200. Journal of Cataract and Refrac-
tive Surgery, 23(1):50–53, 1997.

[33] Michael J. Goggin and Paul Kenna et al. Photoastigmatic refractive ker-
atectomy for compound myopic astigmatism with a nidek laser. Journal
of Refractive Surgery, 13(2):162–166, 1997.

15



[34] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing.
Addison-Wesley, Reading, MA, 1992.

[35] Joseph W. Goodman. Introduction to Fourier Optics. McGraw-Hill, Inc.,
San Francisco, CA, 1968.

[36] Christine Gorman. Should you get the laser eye fix? Time Magazine,
154(15):58–66, October 11 1999.

[37] J. E. Greivenkamp, J. Schweigerling, J. M. Miller, and M. D. Mellinger.
Visual acuity modeling using optical raytracing of schematic eyes. Am. J.
Ophthalmol., 120:227–240, 1995.

[38] R. W. Gubisch. Optical performance of the human eye. J. Opt. Soc. Am.,
57(3):407–415, 1967.

[39] Hans Hagen, Stefanie Hahmann, Thomas Schreiber, Yasuo Nakajima,
Bukard Wördenweber, and Petra Hollemann-Grundstedt. Surface inter-
rogation algorithms. Computer Graphics and Applications, 12(5):53–60,
1992.

[40] David Halliday and Robert Resnick. Physics, part two. John Wiley and
Sons, Inc., New York, NY, 1978.

[41] Mark A. Halstead, Brian A. Barsky, Stanley A. Klein, and Robert B. Man-
dell. A spline surface algorithm for reconstruction of corneal topography
from a videokeratograph reflection pattern. Optom. Vis. Sci, 72:821–827,
1995.

[42] Mark A. Halstead, Brian A. Barsky, Stanley A. Klein, and Robert B.
Mandell. Reconstructing curved surfaces from specular reflection patterns
using spline surface fitting of normals. In Proceedings of ACM SIGGRAPH
1996, New Orleans, LA, August 4–9 1996. SIGGRAPH, Association of
Computer Machinery, Inc.

[43] Mark Arthur Halstead. Efficient Techniques for Surface Design Using
Constrained Optimization. PhD thesis, Department of Computer Science,
University of California at Berkeley, Berkeley, CA, May 1996.

[44] Eugene Hecht. Optics, Second Edition. Addison-Wesley Publishing Co.,
1990.

[45] Richard P. Hemenger, Alan Tomlinson, and Katherine Oliver. Corneal
optics from videokeratographs. Ophthal. Physiol. Opt., 15(1):63–68, 1995.

[46] P. S. Hersh and R. D. Stulting et al. Results of phase iii excimer laser
photorefractive keratectomy for myopia. Ophthalmology, 104(10):1535–
1553, 1997.

[47] H. Hopkins. Wave theory of aberrations. Oxford Univ. Press, 1950.

16



[48] Bradford Howland and Howard C. Howland. Subjective measurement of
high-order aberrations of the eye. Science, 193:580–582, 1976.

[49] Howard C. Howland, Jan Buettner, and Raymond A. Applegate. Com-
putation of the shapes of normal corneas and their monochromatic aber-
rations from videokeratometric measurements. In Vision Science and Its
Applications. 1994 Technical Digest Series. Volume 2, volume 2, pages
54–57. Optical Society of America, Washington, DC, 1994.

[50] Howard C. Howland and Bradford Howland. A subjective method for the
measurement of monochromatic aberrations of the eye. J. Opt. Soc. Am.,
67(11):1508–1518, 1977.

[51] Howard C. Howland, Richard H. Rand, and Sharon R. Lubkin. A thin-
shell model of the cornea and its application to corneal surgery. Refract.
Corneal Surg., 8:183–186, 1992.

[52] J. K. Ijspeert, T. J. T. P. Van Den Berg, and H. Spekreijse. An improved
mathematical description of the foveal visual point spread function with
parameters for age, pupil size and pigmentation. Vision Res., 33(1):15–20,
1993.

[53] Internet Media Services. The Vision Correction Website : Laser Eye
Surgery : rk / prk / lasik. http://www.lasersite.com/.

[54] Victoria Interrante. Illustrating surface shape in volume data via princi-
pal direction-driven 3d line integral convolution. In Proceedings of ACM
SIGGRAPH 1997, pages 109–116, Los Angeles, CA, August 3–8 1997.
SIGGRAPH, Association of Computer Machinery, Inc.

[55] Michael P. Keating. Geometric, Physical and Visual Optics. Butterworths-
Heinemann, Stoneham, MA, 1988.

[56] Peter R. Keller and Paul P. van Saarloos. Perspectives on corneal to-
pography: a review of videokeratoscopy. Clin. Exp. Optom, 80(1):18–30,
1997.

[57] Miles V. Klein. Optics. John Wiley & Sons, New York, NY, 1970.

[58] Stanley A. Klein. Axial curvature and the skew ray error in corneal to-
pography. Optom. Vis. Sci, 74:931–944, 1997.

[59] Stanley A. Klein. Corneal topography reconstruction algorithm that
avoids the skew ray ambiguity and the skew ray error. Optom. Vis. Sci,
74:945–962, 1997.

[60] Stanley A. Klein. Optimal corneal ablation for eyes with arbitrary
hartmann-shack aberrations. J. Opt. Soc. Am. A, 15(9):2580–2588, 1998.

17



[61] Stanley A. Klein and Daniel D. Garcia. Alternative representations of
aberrations of the eye. In Presented at Vision Science and Its Applications
Meeting, Santa Fe, NM, Februrary 11–14 2000.

[62] Stanley A. Klein and Robert B. Mandell. Shape and refractive powers in
corneal topography. Invest. Ophthalmol. Vis. Sci., 36:2096–2109, 1995.

[63] Stanley A. Klein, Robert B. Mandell, and Brian A. Barsky. Representing
corneal shape. In Vision Science and Its Applications, volume 1, pages
37–40, Washington, DC, 1995. Technical Digest Series, Optical Society of
America.

[64] Stephen D. Klyce. Computer-assisted corneal topography, high resolution
graphic presentation and analysis of keratoscopy. Ophthalmol. Vis Sci.,
25:1426–1435, 1984.

[65] Douglas D. Koch, G. N. Foulks, and T. Moran. The corneal eyesys sys-
tem: accuracy, analysis and reproducibility of first generation prototype.
Refract. Corneal Surg., 5:424–429, 1989.

[66] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realistic camera model
for computer graphics. In Proceedings of ACM SIGGRAPH 1995, pages
317–324, Los Angeles, CA, August 6–11 1995. SIGGRAPH, Association
of Computer Machinery, Inc.

[67] M. Koomen, R. Tousey, and R. Scolnick. The spherical aberration of the
eye. J. Opt. Soc. Am., 39(5):370–376, 1949.

[68] J. H. Krachmer, R. S. Feder, and M. W. Belin. Keratoconus and re-
lated noninflammatory corneal thinning disorders. Surv. Ophthalmol.,
28(4):293–322, 1984.

[69] Roger Kumpf. Multivariate corneal visualization in the eyeview system.
Master’s thesis, Department of Computer Science, University of California
at Berkeley, Berkeley, CA, May 1995.
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