Analysis and Defense against Stealth Malware

Dawn Song
dawnsong@cs.berkeley.edu

TightLip False Negative Analysis (I)

- Doppleganger processes
 - Doppleganger & original run in parallel
 - As long as outputs are same, output does not depend on sensitive input
 - Dynamic estimate of non-interference
 » If for any scrubbed input, output is the same as original, then there’s no information leakage
 » Probabilistic guarantee
 - Dynamic enforcement of non-interference
 » With swapping

TightLip False Negative Analysis (II)

Input (s);
 u:=s mod 2;
 v:=0;
 w:=s - s;
 if u
 then x:=0;
 else
 { x:=1;
 v:=1;
 }
 Output(u,v,w,x);

* Given s is odd, which output variables will be marked as leaking information?
Class Project Proposal

- Project proposal: Oct 1 (with extension to Oct 8 if needed)
 - Two page max
 - Content
 » Problem to be addressed
 » Motivation: Why important & Why previous approaches insufficient
 » Proposed approach
 » Evaluation for success
- Hand-in
 - Hardcopy in class
 - Electronic copy
- Project milestone report: Nov 7
 - Current status and plan for action for the remaining time
- Final project report due: Dec 3
- Final project presentation: Dec 3 & 5

Stealth Malware

- After malware gains control, malware wants to hide
 - Robust: anti-removal
 » Anti-AV
 » Avoid clean re-install
 - Anti-analysis
 » Make it hard to find malware footprint

What does Malware Need to Hide?

- Resources
 - Files
 - Registry entries
 - Process/module info
 - Memory footprint
 - Network (stealth backdoor)
- Ultimately, “Has my system been compromised?”
Historical View of Stealth Malware Evolution (I)

• Lie to the instrument
 • First generation:
 – Replace/modify key system files on victim
 » `ls`, `ps`, etc.
 – Counter measure?
 » File system integrity checkers: e.g., Tripwire
 • Second generation:
 – Hooking techniques to alter execution paths of key system functions in memory
 » E.g., VICE
 – Counter measure?
 » Identify anomalous hooks

Historical View of Stealth Malware Evolution (II)

• Third generation:
 – Direct Kernel Object Manipulation (DKOM)
 » E.g., FU rootkit
 – Counter measures?
 » Try to find other data structures that may not have been modified
• N generation:
 – Hiding memory footprint
 » Memory cloaking, e.g., ShadowWalker
 – Counter measures?
 » Look at physical memory directly, etc.

Stealth Malware & Detection

• Arms race
 – Malware & AV program have same level of privilege

• How to break the race?
 – Control a lower layer than opponent
 – Malware’s attempt: VMBR
 – AV program’s attempt:
 out-of-box view, e.g., GhostBuster
VMBR

- Move target OS into VM
- VMBR sits below
- Advantages
 - Target OS sees a completely different view
 - Definition of virtualization
 - Much easier to implement malicious services
 - Just to use resources, no communication with target OS
 - Observe data/events from target system
 - Deliberately modify execution of target system
 - Virtual machine introspection (VMI) to the rescue

VMBR Realization (I): SubVirt

- Runs on x86, based on VMWare and Virtual PC
- How does SubVirt take control?
 - During boot phase
- Drawbacks & limitations of SubVirt
 - Rely on commercial VMM
 - Large footprint
 - Easy to detect?
 - Can be detected off-line
 - How?
 - How to defend against off-line detection?
 - What about on-line detection
 - Detect running in a VM (later in class)
 - Is this an issue?

VMBR Realization (II): Blue Pill

- Relies on AMD SVM (also applicable to Intel VT)
- On-the-fly
 - No reboot nor any modifications in BIOS or boot sectors
- Cannot be detected off-line
- Uses ultra thin hypervisor and all the hardware is natively accessible w/o performance penalty
- Does not survive system reboot by default
 - Not an issue in many cases
- Detection?
Break Time

Defense against Stealth Malware (I)

• Do not allow arbitrary third-party kernel modules to load
 – Vista: all drivers have to be signed
 – Issues?
 » GlobalSign: takes $200 & 2hrs to get a certificate
 » Signed drivers may still have vulnerabilities
 » Make a driver with an embedded vulnerability & signed

• Statically analyze kernel modules to make sure they don’t overwrite sensitive areas before loading
 – Issues?
 » Static binary analysis, ouch!
 » Kernel injections may happen involuntarily

Defense against Stealth Malware (II)

• Try to find how malware tries to hide
 – Issues?
 » Arms race:
 Malware tries to hide in different ways; have to know where to look
 » Anomaly-based heuristics cause false positives

• Try to detect the fact that malware tries to hide
 – Discrepancy from different views
 » GhostBuster
GhostBuster

- Compare high-level scans with “truth”
- How to get “truth”?
 - Inbox low-level scans
 - Issues?
 - Vulnerable to low-level attacks
 - Attacker can simply change your answer
 - Out-of-box scans
 - Issues?
 - Inconvenient, can’t do it often
 - Not necessarily two views of the same thing: cross-time view
 - Solutions?
 - Hardware solution: e.g., co-pilot