
1

Analysis and Defense against Privacy-
Breaching Code

Dawn Song
dawnsong@cs.berkeley.edu

2

The Problem
• How to ensure the execution of a given

program will not leak private information?

• Why should we care?
– Users download/execute third-party code often

» Spyware
» Trojan
» Can’t trust reputably vendor: e.g., Sony rootkits

– In security-critical systems (e.g., military setting)
» How to ensure no malicious actions embedded in third-

party code?
– Misconfiguration can cause privacy leakage

3

Two Steps Causing Privacy Leakage

1. Reading/accessing sensitive inputs

2. Leaking info about sensitive inputs
through attacker-observable outputs

Assuming definition of sensitive data is given.

4

Why not just Sandboxing?
• Why not just disallow read/access to private data?

– Overly strict for some applications
» Toolbar, anti-virus, etc.

• Why not just disallow network access if a program
reads/accesses private data?

– Anti-virus software needs network for update
– Vs. GoogleDesktop sends home the index

• Thus, needs to determine whether accessed
private data will be leaked through outputs

5

Relationship to Information Flow
• Information flow: from output x, can you infer

information about input s?

• Noninterference:
Program p satisfies the noninterference
property if changing confidential inputs of e
does not affect the outputs observable to
attackers.

• Attacker observable outputs
– Network data
– Timing, cache and other covert channels (out of

scope)

6

How to Identify Information Flow?

• Static analysis

• Dynamic analysis

7

Static Analysis (I): Behavior-based
Spyware Detection

• CFG-based reachability analysis
• Does the component which handles browser

events make dangerous Windows API calls?
• Rationale

– Event-handling code gets information about user
– Dangerous Windows API calls may leak information to

outside world
» File write, network send, etc.

8

Challenges
• Identifying event-handling code

– Need to identify event-specific instruction
– Can you do better?

• Analyzing binary for reachability analysis
– Need to disassemble

» Issues?
» Can’t handle packed code

– Build CFG
» Issues?
» May be incomplete due to indirect jumps, etc.

– Better binary analysis can help

• Compile the blacklist for API calls
– Manual effort
– Automatic learning

» Issues?
» Can you do better?

9

Limitations (I)
• Coverage: False Negative

– Different ways for attackers to gain user information?
» Read shared memory

– Different ways for attackers to send out user
information?

» Not through Windows API calls
» Native API?
» Going through legitimate code?

10

Limitation (II)
• Precision: false positive

– CFG-based reachability analysis: conservative
– No data-dependency analysis
– Sent-out information may have nothing to do with

sensitive input

11

Fine-grained Static Information Flow Analysis

• Data & control dependency analysis

Input (s);
u:=s mod 2;
v:=0;
w:=s - s;
if u

then x:=0;
else

{
x:=1;
v:=1;
}

Output(u,v,w,x};

Which output variables leak information about s?

12

Challenges
• Static analysis difficult to be precise

» Conservative

• Malware code obfuscation

13

Break Time

14

Dynamic Information Flow Analysis (I)
• Dynamic taint analysis

– Only track data dependency
– Issues?

Input (s);
u:=s mod 2;
v:=0;
w:=s - s;
if u

then x:=0;
else

{
x:=1;
v:=1;
}

Output(u,v,w,x};

Given s is odd, which output variables will be marked as leaking information?

15

How to Do Better? (I)
• Dynamic taint analysis with static analysis

– Identifying statements dependent on conditionals
– Mark all such statements on path as tainted

Input (s);
u:=s mod 2;
v:=0;
w:=s - s;
if u

then x:=0;
else

{
x:=1;
v:=1;
}

Output(u,v,w,x};
• Given s is odd, which output variables will be marked as leaking information?

16

How to Do Better? (II)
• Issues?

• How to do better?

Input (s);
u:=s mod 2;
v:=0;
w:=s - s;
if u

then x:=0;
else

{
x:=1;
v:=1;
}

Output(u,v,w,x};

17

Other Limitations of Dynamic Taint
Analysis for Information Flow Tracking?

• High runtime overhead
– Static code instrumentation/rewriting
– Runtime binary instrumentation

18

TightLip
• Doppleganger processes

– Doppelganger & original run in parallel
– As long as outputs are same, output does not depend

on sensitive input
– Dynamic estimate of non-interference

• How to compare with the accuracy of dynamic
taint analysis?

19

Challenges
• Divergence: False positives

– Doppleganger needs to be exact shadow
» In order delivery
» Signal handling, etc.

– Control flow divergence
» How to scrub data?

• Zero side effect

• False negatives?

20

Open Mic
• Brainstorming: better approach?

• Other comments?

21

Limitations of Noninterference
• Overly strict

– Password check
– Meta-data update in GoogleDesktop

• Solutions
– Declassification
– Quantitative information flow

22

Summary
• Detection of privacy breach

– Relationship with information flow
– Static & dynamic techniques

• Next class:
– Stealthy malware
– Info on project proposal

