
1

Automatic Worm Defense (II) --
More on Automatic Signature Generation

Dawn Song
dawnsong@cs.berkeley.edu

2

Central Question
• Given an exploit to a vulnerability,

how to generalize to create an effective signature?

• Key: identify constraints on inputs
– Reachability condition

» Program execution reaches vulnerability point
– Vulnerability condition

» Triggers vulnerability at vulnerability point

• Idea: given an exploit
– Identify vulnerability condition
– Generalize reachability condition

3

Background: Exploit Detector (I)
• Exploit detector monitors for runtime memory

safety violations

• Source-based mechanisms
– Runtime type check: e.g., CCured
– Array bounds check: e.g., CRED
– Detect illegitimate writes: e.g., DFI (Data Flow Integrity)
– Protecting activation records: e.g., StackGuard

• Binary-only mechanisms
– Dynamic taint analysis

4

HTTP-like Example

1. int check_http(char *input) {
2. char buf[8];
3. if (strncmp(input, “get”,3) != 0 &&
4. strncmp(input, “put”,3) != 0)
5. return -1;
6. if (input[3] != ‘/‘) return -1;
7. strncpy(buf, input, 4);
8. int i = 4;
9. while (input[i] != ‘\n‘)
10. { buf[i] = input[i];
11. i++; }
12. return i;
13. }

char *input

return address

stack frames

input

buf

Vulnerability
condition: i ≥ 8

5

Dynamic Taint Analysis
• Dynamic binary

instrumentation to track taint
propagation

– Data from untrusted sources:
tainted

– Keep track of taint propagation
during program execution

– Detect when tainted data is
misused: safety violation

» e.g., as return address or
function pointer

char *input

prev stack frames

return address

buf

inputnetwork packet

6

Automatic Diagnosis
• Extract vulnerability

information:
– The Vulnerability Condition:

Necessary conditions to violate safety
– The Vulnerability Point:

Location vulnerability condition first
satisfied

• Attack attribution: identify
input that triggered
vulnerability

– Approach: Back trace dynamic
taint propagation

• Limitations?

char *input

prev stack frames

return address

buf

network packet input

7

Background: Exploit Detector (II)
• Necessary first step for automatic signature

generation

• Why not just use exploit detector instead of input
filter?

– Runtime overhead
– When detecting the attack, may already be too late

» May have to restart server
» Even exceptions may not be handled well in type-safe languages

8

ShieldGen: Automatic Data Patch Generation for
Unknown Vulnerabilities with Informed Probing

9

Main Idea (I)
• What to generalize from original exploit?

– Vulnerability condition
» Buffer length condition for buffer overflows

– Reachability condition
» Remove unnecessary fields/iterations
» Widening field values

10

Main Idea (II)
• How to generalize from original exploit?

– Guided probing to generate new exploits
– Use new exploits to relax condition

Zero-Day
Attack Detector

Data Analyzer

Probe
Generator
& Analyzer

Suspicious
Traffic

Exploit

Data
Format

Attack Data
with Semantics

Data
Patch

Probe

Probe
Successful

or Failed

Exploit Detector

11

Why Use a Data Analyzer?
• Constraints are often on substrings in message

with semantics
– Express constraints and perform matching

• To generate legitimate probes
– Reduce # of probes tested
– Not to overly constraint certain values

12

Probe & Signature Generation
• Vulnerability condition

– Heuristics to identify buffer overflows
– Heuristics to identify buffer length condition for buffer

overflows

• Reachability condition
– Remove unnecessary fields/iterations

» Remove them and gradually add back in to generate probes
» Remove from signature if not needed for a successful exploit

– Widening field values
» Sampling field values to generate probes
» Remove don’t-care fields from signature

13

Comparison with Pattern-Extraction
based Approach

• Pattern-extraction based approach
– Passively wait for more exploits
– Learning without semantics/protocol parsing

• Added assumptions
– Access to exploit detector
– Access to data analyzer

14

Limitations (I)
• Data analyzer assumption

– Not always available
» Important for new attacks
» May be deeper level than message parsing

– Difference btw protocol specification & real implementation
» How did ShieldGen try to address this issue?

• Buffer overflow heuristics
– How to fix it?

• Offending byte identification
– Complex calculation could involve many bytes in input

• Probe generation
– Require accurate data analyzer
– Iteration removals/Sampling techniques miss values

» How to fix it?
– Combinatoric explosion for complex conditions

15

Limitations (II)
• Signature generation

– No guarantees
– False positives?
– False negatives?

• What types of vulnerabilities is this applicable to?

• Other thoughts?

16

Star Paper Summary #1
• Que 1: Design your favorite botnet

– Emphasize on attack-resilient strategies & technologies
– How to design architecture for command-&-control &

communication

• Que 2: What do you think are the necessary ingredients for
defending against future botnets?

– E.g., absolute host security?
– E.g., authenticated traffic?

• Que 3: Can you think of a sufficient recipe for defending
against future botnets?

• Hand-in:
– Hard copy in class at beginning of Mon class
– Electronic copy before Mon class

