Privacy-preserving Distributed Information Sharing and Secure Function Evaluation

Dawn Song
dawnsong@cs.berkeley.edu

Thanks for Benny Pinkas for some of the slides

Project

- **Milestone report**
 - Do not affect grade
 - Just for status update
 - Feedback tomorrow

- **Poster session**:
 - Dec 5, 4-6pm, Woz
 - Report due by 4pm, Dec 5
 - Electronic submission to summary gmail account
 - Hardcopy submission to office mailbox

- **Final report**:
 - Single column, 11pt font, reasonable margin
 - 10 pg limit excluding bibliography & appendix
 - Similar to a conference paper format
 - Abstract
 - Introduction: problem motivation & introduction
 - Approach
 - Design & Implementation
 - Evaluation: if something didn't work as expected, explain why
 - Related work
 - Conclusion

- **Final submission**
 - Tarball of all software (including make files, test scripts & environment), paper (including source files), poster slides

Samples of Cryptographic Constructions for Privacy-preserving Applications

- The following few lectures
- Show what can be done & give a flavor of how it is done
- It’s OK if you get a little lost
 - Just focus on the high-level picture
- Later this semester
 - Privacy issues in applications
 - Guest lecture at end of semester
 - Real-world case studies on privacy
 - Court cases fought by EFF
Privacy-Preserving Distributed Information Sharing

• Allow multiple data holders to collaborate in order to compute important information while protecting the privacy of other information.
 – Security-related information
 – Users’ private information
 × Health information
 – Enterprises’ proprietary information

Example Scenario: Medical Research

• Medical research:
 – Trying to learn patterns in the data, in “aggregate” form.
 – Problem: how to enable learning aggregate data without revealing personal medical information?
 – Hiding names is not enough, since there are many ways to uniquely identify a person

• A single hospital/medical researcher might not have enough data
• How can different organizations share research data without revealing personal data?

Issues and Tools

• Best privacy can be achieved by not giving any data, but..
• Privacy tools: cryptography
 – Encryption: data is hidden unless you have the decryption key. However, we also want to use the data.
 – Secure function evaluation: two or more parties with private inputs. Can compute any function they wish without revealing anything else.
 – Strong theory. Starts to be relevant to real applications.
• Non-cryptographic tools
 – Query restriction: prevent certain queries from being answered.
 – Data/Input/output perturbation: add errors to inputs – hide personal data while keeping aggregates accurate. (randomization, rounding, data swapping.)
 – Can these be understood as well as we understand Crypto? Provide the same level of security as Crypto?
Crypto Primer: Symmetric Key Encryption

- Alice wants to send a message \(m \in \{0,1\}^n \) to Bob
 - Set-up phase is secret
 - Symmetric encryption: Alice and Bob share a secret key \(k \)
- They want to prevent Eve from *learning* anything about the message

![Diagram](image)

Crypto Primer: Public Key Encryption

- Alice generates a private/public key pair \((SK, PK)\)
- Only Alice knows the secret key \(SK \)
- Everyone (even Eve) knows the public key \(PK \), and can encrypt messages to Alice
- Only Alice can decrypt (using \(SK \))

![Diagram](image)

Problem: Secure Function Evaluation

- A major topic of cryptographic research
- How to let \(n \) parties, \(P_1, \ldots, P_n \) compute a function \(f(x_1, \ldots, x_n) \)
 - Where input \(x_i \) is known to party \(P_i \)
 - Parties learn the final input and nothing else
The Millionaires Problem [Yao]

Whose value is greater?
Leak no other information!

Comparing Information without Leaking it

- Output: Is $x=y$?
- The following solution is **insecure**:
 - Use a one-way hash function $H()$
 - Alice publishes $H(x)$, Bob publishes $H(y)$

Secure two-party computation – Security definition

Input

- x
- y

Output

- $F(x,y)$ and nothing else

As if...

- x
- y

$F(x,y)$

Trusted third party

$F(x,y)$
Leak no other information

• A protocol is secure if it emulates the ideal solution
• Alice learns $F(x,y)$, and therefore can compute everything that is implied by x, her prior knowledge of y, and $F(x,y)$.
• Alice should not be able to compute anything else

• Simulation:
 – A protocol is considered secure if:
 • For every adversary in the real world
 • There exists a simulator in the ideal world, which outputs an indistinguishable "transcript", given access to the information that the adversary is allowed to learn

Secure Function Evaluation

• Major Result [Yao]: “Any function that can be evaluated using polynomial resources can be securely evaluated using polynomial resources”
 (under some cryptographic assumption)

SFE Building Block: 1-out-of 2 Oblivious Transfer

• 1-out-of-2 OT can be based on most public key systems
• There are implementations with two communication rounds
General Two party Computation

Two party protocol

• Input:
 – Sender: Function F (some representation)
 » The sender’s input Y is already embedded in F
 – Receiver: \(X \in \{0,1\}^n \)

• Output:
 – Receiver: \(F(x) \) and nothing else about F
 – Sender: nothing about x

Representations of \(F \)

• Boolean circuits [Yao,GMW,…]
• Algebraic circuits [BGW,…]
• Low deg polynomials [BFKR]
• Matrices product over a large field [FKN,IK]
• Randomizing polynomials [IK]
• Communication Complexity Protocol [NN]

Secure two-party computation of general functions [Yao]

• First, represent the function F as a Boolean circuit C
 – It’s always possible
 – Sometimes it’s easy (additions, comparisons)
 – Sometimes the result is inefficient (e.g. for indirect addressing, e.g. \(A[x] \))

• Then, “garble” the circuit

• Finally, evaluate the garbled circuit
Garbling the circuit

- Bob constructs the circuit, and then garbles it.

\[\begin{align*}
W_k^0 & \equiv 0 \text{ on wire } k \\
W_k^1 & \equiv 1 \text{ on wire } k \\
\end{align*} \]

(Alice will learn one string per wire, but not which bit it corresponds to.)

Gate tables

- For every gate, every combination of input values is used as a key for encrypting the corresponding output.

- Assume \(G = \text{AND} \). Bob constructs a table:
 - Encryption of \(w_k^0 \) using keys \(w_i^0, w_J^0 \) (AND(0,0)=0)
 - Encryption of \(w_k^1 \) using keys \(w_i^0, w_J^1 \) (AND(0,1)=0)
 - Encryption of \(w_k^1 \) using keys \(w_i^1, w_J^0 \) (AND(1,0)=0)
 - Encryption of \(w_k^1 \) using keys \(w_i^1, w_J^1 \) (AND(1,1)=1)

- Result: given \(w_i^x, w_J^y \), can compute \(w_k^{G(x,y)} \)

Secure computation

- Bob sends the table of gate \(G \) to Alice.
- Given, e.g., \(w_i^0, w_J^1 \), Alice computes \(w_k^0 \) by decrypting the corresponding entry in the table, but she does not know the actual values of the wires.

Encryption of \(w_i^x \) using keys \(w_i^0, w_J^y \)
Encryption of \(w_i^x \) using keys \(w_i^1, w_J^y \)
Encryption of \(w_i^x \) using keys \(w_i^0, w_J^1 \)
Encryption of \(w_i^x \) using keys \(w_i^1, w_J^0 \)

Permuted order
Secure computation

- Bob sends to Alice
 - Tables encoding each circuit gate.
 - Garbled values (w’s) of his input values.
 - Translation from garbled values of output wires to actual 0/1 values.

- If Alice gets garbled values (w’s) of her input values, she can compute the output of the circuit, and nothing else.

Alice’s input

- For every wire i of Alice’s input:
 - The parties run an OT protocol
 - Alice’s input is her input bit (s).
 - Bob’s input is \(w_i^0, w_i^1 \)
 - Alice learns \(w_i^s \)

- The OTs for all input wires can be run in parallel.
- Afterwards Alice can compute the circuit by herself.

Secure computation – the big picture

- Represent the function as a circuit C
- Bob sends to Alice 4|C| encryptions (e.g. 64|C| B ines), 4 encryptions for every gate.
- Alice performs an OT for every input bit. (Can do, e.g. 100-1000 OTs per sec.)
- ~One round of communication.
- Efficient for medium size circuits!
- Fairplay [MNPS]
 - a secure two-party computation system
 - implementing Yao’s “garbled circuit” protocol
Privacy-preserving Set Operations

- Yao’s Garbled Circuit is a generic construction
 - May be too expensive for complex functions
- For specific functions, we could design more efficient algorithms
 - E.g., privacy-preserving set operations [Kissner-Song]
- Data can often be represented as multisets
- Important operations often can be represented as set operations
- Thus, need methods for privacy-preserving set operations

Motivation (I): Do-Not-Fly List

- Do-not-fly list
 - Airlines must determine which passengers cannot fly
 - Government and airlines cannot disclose their lists

Motivation (II): Public Welfare Survey

- How many welfare recipients are being treated for cancer?
 - Cancer patients and welfare rolls are confidential
 - Compute private union and intersection operations
Motivation (III): Distributed Network Monitoring

- Each node keeps a list of anomalous events
- Identify anomalous events appearing at t or more nodes
- Compute private union and element reduction operations
- d-th Element reduction $R_{d}(S)$: If an element a appears b times in S, a appears $b - d$ times in the d-th reduction of S

Private Set Operations

- Traditional approach: trusted third party (TTP)
- Private set operations:
 - No trusted third party
 - Provide the same privacy/security as in TTP case
- Results:
 - Efficient, composable, privacy-preserving operations on multisets: intersection, union, element reduction
 - Can also compute multiset cardinality, subset relations
- Solution:
 - Polynomials as intermediate representation of sets
 - Use mathematical properties of polynomials for set operations
 - Homomorphic encryption to compute on encrypted polynomials

Computing Polynomial Representations of Set Operations

- Use polynomial f over Ring R to represent multiset S: roots are the set elements, $f = \prod (\omega - a)_{\omega \in S}$
- Given polynomials f and g representing multiset S and T, compute the polynomial representing:
 a) $S \cup T$;
 b) $S \cap T$;
 c) $R_d(S)$;
- with properties:
 1) Correctness: well-formed roots give correct result.
 2) Privacy: reveal no additional information about S & T.
Multiset Union

Multisets
- S
- T

Polynomial Rep.
- f
- g

$S \cup T \leftrightarrow f \ast g$

- **Satisfies:**
 - a) Correctness: polynomial multiplication preserves roots
 - b) Privacy: trivial

Multiset Intersection: Strawman Approach

Multisets
- S
- T

Polynomial Rep.
- f
- g

$S \cap T \leftrightarrow f \ast g$

- **Polynomial addition preserves shared roots**
- **However, reveals extra information about S and T**

Multiset Intersection

Multisets
- S, T

Polynomial Rep.
- f, g

$S \cap T \leftrightarrow f \ast r \ast g \ast s$

- r, s: uniformly distributed polynomials from $R^{\deg(f)}[x]$ (each coefficient chosen u.a.r. from R)
- **Lemma:** If $\gcd(u, v) = 1$, $\deg(u) = \deg(v) = p$, $r, s \in R^p[x]$, leading coefficients of u and v have multiplicative inverse, then $u \ast r \ast v \ast s$ is uniformly distributed over $R^h[x]$, $h = 2p$
- **Correctness & privacy from lemma**
Element Reduction

 \[S \rightarrow f \]

\[\text{Rd}_j(S) \rightarrow \sum_{0 \leq i \leq df(j)} r_i \cdot e_j \]

- \(r_i \): uniformly distributed polynomials from \(\mathbb{R}^{\text{deg}(f)}[x] \) (each coefficient chosen u.a.r. from \(\mathbb{R} \))
- \(e_j \): polynomial of degree \(j \) with certain properties
- Proof of correctness and privacy more complicated

Homomorphic Encryption (I)

- Encrypt coefficients of polynomial using a \textit{threshold additively homomorphic} cryptosystem
- We can perform the calculations needed for our techniques with encrypted polynomials (examples use Paillier cryptosystem)

 - Addition

\[
\begin{align*}
 h_i &= f + y \\
 h_{i+1} &= f_i + g_i \\
 E(h_i) &= E(f_i) - E(g_i)
\end{align*}
\]

Homomorphic Encryption (II)

- Formal derivative

\[
\begin{align*}
 h &= f' \\
 h_i &= (i+1)f_{i+1} \\
 E(h_i) &= E(f_i)_{i+1}
\end{align*}
\]

- Multiplication

\[
\begin{align*}
 h &= f \cdot g \\
 h_i &= \sum_{j=0}^{k} f_j \cdot g_{k-j} \\
 E(h_i) &= \prod_{j=0}^{k} E(f_j)^{a_j}
\end{align*}
\]
Multiset Intersection

- Let each player \(i (1 \leq i \leq n) \) hold an input multiset \(S_i \).
- Each player calculates the polynomial \(f_i \) representing \(S_i \) and broadcasts \(E(f_i) \).
- For each \(i \), each player \(j (1 \leq j \leq n) \) chooses uniformly distributed polynomial \(r_{i,j} \) and broadcasts \(E(j \cdot r_{i,j}) \).
- All players calculate and decrypt:
 \[E\left(\sum_{i=1}^{n} a_i \cdot \left(\sum_{j=1}^{n} r_{i,j}\right)\right) \]
- Players determine the intersection multiset:
 if \(\{x \mid x \in a \} \neq \emptyset \)
 then \(a \) appears \(b \) times in the result.

SFE: Other Side of the Story

- Provable security
 - Simulation to the ideal world
 - Learn nothing more than the final results
- However, the function needs to be well chosen first
 - Computing the median may leak sufficient info if the set is small

Summary

- Privacy-preserving distributed information sharing
- Secure function evaluation
 - Security definition
 - Possibility results & generic construction
 - More specialized construction
 - Private set operations
- Next class
 - Computation on encrypted data
 - Private operations on Untrusted Servers/Storage