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Project
• Milestone report

– Do not affect grade
– Just for status update
– Feedback tomorrow

• Poster session: 
– Dec 5, 4-6pm, Woz
– Report due by 4pm, Dec 5

» Electronic submission to summary gmail account
» Hardcopy submission to office mailbox

• Final report:
– Single column, 11pt font, reasonable margin
– 10 pg limit excluding bibliography & appendix
– Similar to a conference paper format

» Abstract
» Introduction: problem motivation & introduction
» Approach
» Design & implementation
» Evaluation: if something didn’t work as expected, explain why
» Related work
» Conclusion

• Final submission
– Tarball of all software (including make files, test scripts & environment), paper 

(including source files), poster slides
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Samples of Cryptographic Constructions for 
Privacy-preserving Applications

• The following few lectures
• Show what can be done & give a flavor of how it 

is done
• It’s OK if you get a little lost

– Just focus on the high-level picture
• Later this semester

– Privacy issues in applications
– Guest lecture at end of semester

» Real-world case studies on privacy
• Court cases fought by EFF
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Privacy-Preserving Distributed 
Information Sharing

• Allow multiple data holders to collaborate in 
order to compute important information while 
protecting the privacy of other information. 

– Security-related information
– Users’ private information

» Health information
– Enterprises’ proprietary information

5

Example Scenario: Medical Research

• Medical research:
– Trying to learn patterns in the data, in “aggregate”

form.
– Problem: how to enable learning aggregate data 

without revealing personal medical information?
– Hiding names is not enough, since there are many 

ways to uniquely identify a person

• A single hospital/medical researcher might not 
have enough data

• How can different organizations share research 
data without revealing personal data?
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Issues and Tools

• Best privacy can be achieved by not giving any data, but..
• Privacy tools: cryptography

– Encryption: data is hidden unless you have the decryption key. 
However, we also want to use the data.

– Secure function evaluation: two or more parties with private inputs. 
Can compute any function they wish without revealing anything else.

– Strong theory. Starts to be relevant to real applications.
• Non-cryptographic tools

– Query restriction: prevent certain queries from being answered.
– Data/Input/output perturbation: add errors to inputs – hide personal 

data while keeping aggregates accurate.  (randomization, rounding, data 
swapping.)

– Can these be understood as well as we understand Crypto? 
Provide the same level of security as Crypto?
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Crypto Primer: Symmetric Key Encryption

• Alice wants to send a message m ∈ {0,1}n to Bob
– Set-up phase is secret
– Symmetric encryption: Alice and Bob share a secret key k

• They want to prevent Eve from learning anything about 
the message   

Alice Bob

Eve

Ek(m)

k k
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Crypto Primer: Public key encryption

• Alice generates a private/public key pair 
(SK,PK)

• Only Alice knows the secret key SK
• Everyone (even Eve) knows the public key 

PK, and can encrypt messages to Alice
• Only Alice can decrypt (using SK)

Alice Bob

Eve

EPK(m)

SK

Charlie
PK

PKEPK(m)
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Problem: Secure Function Evaluation

• A major topic of cryptographic research
• How to let n parties, P1,..,Pn compute a 

function f(x1,..,xn) 
– Where input xi is known to party Pi

– Parties learn the final input and nothing else
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The Millionaires Problem [Yao]

x

Whose value is greater?

y

Leak no other information!

Alice Bob
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Comparing Information without Leaking it

• Output: Is x=y?
• The following solution is insecure:

– Use a one-way hash function H()
– Alice publishes H(x), Bob publishes H(y)

x
yAlice Bob
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Secure two-party computation – Security definition

x y
F(x,y) and nothing else

Input:
Output:

x yAs if…

F(x,y) F(x,y)

Trusted third party
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Leak no other information
• A protocol is secure if it  emulates the ideal solution
• Alice learns F(x,y), and therefore can compute everything 

that is implied by x, her prior knowledge of y, and F(x,y).
• Alice should not be able to compute anything else

• Simulation:
– A protocol is considered secure if: 

For every  adversary  in the real world
There exists a simulator in the ideal world, which outputs an 
indistinguishable ``transcript” , given access to the information 
that the adversary is allowed to learn
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Secure Function Evaluation

• Major Result [Yao]: “Any function that 
can be evaluated using polynomial 
resources can be securely evaluated 
using polynomial resources”
(under some cryptographic assumption)
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SFE Building Block: 1-out-of 2 Oblivious 
Transfer

Learns 
nothingYj

Alice
j∈{0,1}

Bob
Y0, Y1

• 1-out-of-2 OT can be based on most public key systems

• There are implementations with two communication rounds
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General Two party Computation

Two party protocol

• Input:
– Sender: Function F (some representation)

» The sender’s input Y is already embedded in F

– Receiver: X ∈{0,1}n

• Output:
– Receiver:  F(x) and nothing else about F
– Sender: nothing about x
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Representations of F

• Boolean circuits [Yao,GMW,…]
• Algebraic circuits [BGW,…]
• Low deg polynomials [BFKR]
• Matrices product over a large field [FKN,IK]
• Randomizing polynomials [IK]
• Communication Complexity Protocol [NN]
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Secure two-party computation of general functions [Yao]

• First, represent the function F as a Boolean 
circuit C
– It’s always possible
–Sometimes it’s easy (additions, comparisons)
–Sometimes the result is inefficient (e.g. for 

indirect addressing, e.g. A[x] )

• Then, “garble” the circuit

• Finally, evaluate the garbled circuit
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Garbling the circuit
• Bob constructs the circuit, and then garbles it. 

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1

W values will serve 
as cryptographic 
keys

Wk
0 ≡ 0 on wire k

Wk
1 ≡ 1 on wire k

(Alice will learn one
string per wire, but
not which bit it 
corresponds to.)
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Gate tables

• For every gate, every combination of input 
values is used as a key for encrypting the 
corresponding output

• Assume G=AND. Bob constructs a table:
– Encryption of wk

0 using keys wi
0,wJ

0  (AND(0,0)=0)
– Encryption of wk

0 using keys wi
0,wJ

1     (AND(0,1)=0)
– Encryption of wk

0 using keys wi
1,wJ

0     (AND(1,0)=0)
– Encryption of wk

1 using keys wi
1,wJ

1     (AND(1,1)=1)

• Result: given wi
x,wJ

y, can compute wk
G(x,y)
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Secure computation

• Bob sends the table of gate G to Alice
• Given, e.g., wi

0,wJ
1, Alice computes wk

0

by decrypting the corresponding entry 
in the table, but she does not know the 
actual values of the wires. 

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1Encryption of wk
0 using keys wi

0,wJ
0

Encryption of wk
0 using keys wi

0,wJ
1

Encryption of wk
1 using keys wi

1,wJ
1

Encryption of wk
0 using keys wi

1,wJ
0

Permuted order
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Secure computation

• Bob sends to Alice
–Tables encoding each circuit gate.
–Garbled values (w’s) of his input values.
–Translation from garbled values of output 

wires to actual 0/1 values.

• If Alice gets garbled values (w’s) of her 
input values, she can compute the 
output of the circuit, and nothing else.
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Alice’s input

• For every wire i of Alice’s input:
– The parties run an OT protocol
– Alice’s input is her input bit (s).
– Bob’s input is wi

0,wi
1

– Alice learns wi
s

• The OTs for all input wires can be run in parallel. 
• Afterwards Alice can compute the circuit by 

herself. 
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Secure computation – the big picture

• Represent the function as a circuit C
• Bob sends to Alice 4|C| encryptions (e.g. 

64|C| Bytes), 4 encryptions for every gate.
• Alice performs an OT for every input bit.  

(Can do, e.g. 100-1000 OTs per sec.)
• ~One round of communication.
• Efficient for medium size circuits!
• Fairplay [MNPS]

– a secure two-party computation system
– implementing Yao’s “garbled circuit” protocol
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Privacy-preserving Set Operations
• Yao’s Garbled Circuit is a generic construction

– May be too expensive for complex functions
• For specific functions, we could design more 

efficient algorithms
– E.g., privacy-preserving set operations [Kissner-Song]

• Data can often be represented as multisets
• Important operations often can be represented as 

set operations
• Thus, need methods for privacy-preserving set 

operations
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•Do-not-fly list
–Airlines must determine which passengers cannot fly
–Government and airlines  cannot disclose their lists

Motivation (I): Do-Not-Fly List
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• How many welfare recipients are being treated for 
cancer?
– Cancer patients and welfare rolls are confidential
– Compute private union and intersection operations

Motivation (II): Public Welfare Survey



28

• Each node keeps a list of anomalous events
• Identify anomalous events appearing at t or more nodes
• Compute private union and element reduction operations     
• d-th Element reduction Rdd(S) : If an element a appears b
times in S, a appears b-d times in the d-th reduction of S

Motivation (III): Distributed Network Monitoring
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Private Set Operations
• Traditional approach: trusted third party (TTP)

• Private set operations:
– No trusted third party
– Provide the same privacy/security as in TTP case

• Results:
– Efficient, composable, privacy-preserving operations on 

multisets: intersection, union, element reduction
– γ ::= s | Rdd(γ) | γ ∩ γ | s ∪ γ | γ ∪ s
– Can also compute multiset cardinality, subset relations

• Solution:
– Polynomials as intermediate representation of sets
– Use mathematical properties of polynomials for set operations
– Homomorphic encryption to compute on encrypted polynomials  
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Computing Polynomial 
Representations of Set Operations

• Use polynomial f over Ring R to represent multiset S: 
roots are the set elements, f=

• Given polynomials f and g representing multiset S and T,
compute the polynomial representing:
a) S ∪ T;
b) S ∩ T;
c) Rdd(S);
with properties:
1) Correctness: well-formed roots give correct result.
2) Privacy: reveal no additional information about S & T. 
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Multiset Union

• Satisfies:
a) Correctness: polynomial multiplication 

preserves roots
b) Privacy: trivial

Multisets Polynomial Rep.

S f

T g

S ∪ T f∗g
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Multiset Intersection: Strawman Approach

• Polynomial addition preserves shared roots
• However, reveals extra information about S and T 

Multisets Polynomial Rep.

S f
T g

S ∩ T f+g

33

Multiset Intersection

• r,s: uniformly distributed polynomials from RDeg(f)[x]
(each coefficient chosen u.a.r. from R)

• Lemma: If gcd(u,v)=1, Deg(u)=Deg(v)=p, r,s←Rp[x],
leading coefficients of u & v have multiplicative inverse, 
then u∗r+v∗s is uniformly distributed over Rh[x], h=2p.

• Correctness & privacy from lemma

Multisets Polynomial Rep.

S, T f,g

S ∩ T f∗r+g∗s
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Element Reduction

• rj: uniformly distributed polynomials from RDeg(f)[x]
(each coefficient chosen u.a.r. from R)

• ej: polynomial of degree j with certain properties
• Proof of correctness and privacy more complicated

Multisets Polynomial Rep.

S f

Rdd(S) ∑0≤i≤df(j)∗rj ∗ej
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•Encrypt coefficients of polynomial using a 
threshold additively homomorphic cryptosystem
•We can perform the calculations needed for our 
techniques with encrypted polynomials (examples 
use Paillier cryptosystem)
–Addition

Homomorphic Encryption (I)
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•Formal derivative

•Multiplication

Homomorphic Encryption (II)
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•Let each player i (1≤i≤n) hold an input multiset Si
•Each player calculates the polynomial firepresenting Si and broadcasts E(fi)
•For each i, each player j (1≤j≤n) chooses uniformly 
distributed polynomial ri,j, and broadcasts
•All players calculate and decrypt

•Players determine the intersection multiset: 
if                   
then a appears b times in the result 

Multiset Intersection
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SFE: Other Side of the Story
• Provable security

– Simulation to the ideal world
– Learn nothing more than the final results

• However, the function needs to be well chosen 
first

– Computing the median may leak sufficient info if the set 
is small
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Summary
• Privacy-preserving distributed information 

sharing
• Secure function evaluation

– Security definition
– Possibility results & generic construction
– More specialized construction

» Private set operations

• Next class
– Computation on encrypted data
– Private operations on Untrusted Servers/Storage 


