Web Security

Dawn Song
dawnsong@cs.berkeley.edu

Mid-term Questionnaire Summary (I)

• Optional readings
 – You don’t have to read them
• Paper summaries
 – Should not take too much time
 – No homeworks, so load is balanced
 – Bullet form is ok
 – Due before class?
 – Summaries on-line?
 – Feedback on summaries?
 – Readings will be reduced in 2nd half of semester
 » Give time for project
• Speed
 – People have diverse background, so it’s difficult to satisfy everyone at the same time
 – Thanks for understanding

Mid-term Questionnaire Summary (II)

• Guest lecture
 – Many students really like the idea
 – We’ll have a few more guest lectures
 – Would have liked more discussions:
 » Prepare your questions
• Discussions
 – Many find exciting & insightful
 – More people need to participate!
 » No pressure
 » Don’t be shy :)!
 » Try to contribute with your thoughts/questions
 » Try to bring your comments to OpenMic
• Students select topics
 – Let me know & we’ll try to accommodate if there’s time
Project Proposal

• Mostly fine with topics
 – Scott & Craig: come see me after class

• Many lack timeline
 – Include timeline & resubmit by Oct 22

• Milestone: due Nov 14

• Poster session: Dec 6, 2:30-4:30pm
 – In conjunction with CS261

Browser-OS Analogy

• OS
 – Resource management
 – Layer of abstraction
 – Isolation

• Browser-platform
 – What resources does browser-platform manage?
 » OS analogous?
 – What abstractions does browser-platform provide?
 » OS analogous?
 – What properties should browser-platform ensure?
 » OS analogous?

Straw-man Approaches

• VMWare Web browser appliance
 – A check-pointed image of Firefox browser on Linux
 – Disadvantages?
• What about running each URL in a separate VM?
Tahoma Architecture

- Trust model & principles
 - Web applications should not be trusted
 - Web application = Browser instance + web services
 - Isolation: each browser instance in VM
 - Web browsers should not be trusted
 - Isolate browsers from rest of the system
 - Network policy & reverse firewall
 - Increase visibility & control over downloaded web applications
 - Web applications should be visible to users like desktop applications

Manifests

- Tahoma web applications are first-class objects
 - Explicitly defined & managed
- Manifests
 - Digital signatures authenticating web service
 - Browser policy: code to run in browser instance
 - Network policy: internet access policy to be enforced by reverse firewall
- A paradigm for mobile code
 - Signature + code + sandbox policy
Browser Operation System (BOS)

- TCB for Tahoma browsing system
- Multiplexes virtual screens of each browser instance into physical display
 - Trusted border
- Enforce network policies for each instance
- Store state for associated browser instance
 - Bookmarks, manifests
- Inter-application communication
 - Fork, BinStore, BinFetch

Tahoma Implementation

- Xen VMM in Linux
- BOS, BOS Kernel & tiny proxy implemented as domain0 VM
- Browser instance run on Xen VM
- Window manager aggregates virtual screens on physical screen
- Browser modifications
 - Linking to libQT to access Tahoma graphics subsystems
 - Using browser-call to access remote services
 - Using browser-call for new functions, e.g., fork

Discussions

- Advantages of Tahoma
 - What common attacks does Tahoma prevent?
- Disadvantages of Tahoma?
 - What kinds of attacks does Tahoma fail to prevent?
- How does Tahoma compare with SFI/XFI?
- Does Tahoma provide a trusted-path btw user & web service? Why?
Open Mic

• Anything else you thought that’s really clever in the papers?
• Anything else you didn’t like about the papers?
• Any other unclear points about the papers?
• Other comments/remarks to share?

Summary

• BrowserOS

• Next class:
 – Mashup OS
 – XSS