
Clickjacking Revisited
A Perceptual View of UI Security

Devdatta Akhawe, Warren He, Zhiwei Li, Reza Moazzezi, Dawn Song
UC Berkeley

Abstract
Clickjacking is a powerful attack against modern web
applications. While browser primitives like X-Frame-
Options provide a rigorous defense for simple applica-
tions, mashups such as social media widgets require se-
cure user interaction while embedded in an untrusted web-
page. Motivated by these application scenarios, the W3C
UI safety specification proposes new browser primitives
to provide a strong defense against clickjacking attacks
on embedded widgets. We investigate whether these pro-
posed primitives provide requisite security against click-
jacking. We observe that UI security attacks such as click-
jacking are fundamentally attacks on human perception.
Revisiting clickjacking from a perceptual perspective, we
develop five novel attacks that completely bypass the pro-
posed UI safety specification. Our attacks are powerful
with success rates ranging from 20% to 99%. However,
they only scratch the surface of possible perceptual attacks
on UI security. We discuss possible defenses against our
perceptual attacks and find that most defenses either have
an unacceptable usability cost or do not provide a com-
prehensive defense. Finally, we posit that a number of
attacks are possible with a more comprehensive study of
human perception.

1 Introduction
User Interface (UI) security attacks, or UI redressing at-
tacks, including clickjacking [11, 14] and tapjacking [37],
present a difficult problem for modern web applications.
Such attacks are a threat whenever mutually distrusting
principals (e.g., cross-origin iframes on the web) share the
screen canvas or interface. Using the shared canvas, the
attacker principal (i.e., malicious page) can trick the user
into clicking on a third-party application frame (e.g., a
Facebook Like button). For example, typical clickjacking
attacks rely on making the third-party frame (containing
the Like button) transparent so that the user does not re-
alize she is clicking on it. These attacks are particularly
difficult for the application to defend against, because

they look like legitimate user actions to the application
backend.

Current clickjacking defenses such as X-Frame-
Options sacrifice functionality for security. Using
X-Frame-Options, an application can request the browser
never to load a particular page in a frame. This is not a
practical solution for third-party mashup applications
such as Facebook Like buttons. Instead, Facebook
mitigates such attacks by requiring a second user click
on a new window;1 again, sacrificing functionality for
security.

Motivated by the absence of defenses that preserve
functionality, the W3C recently started work on a UI
safety specification [25]. At its core, the specification re-
lies on the InContext defense previously proposed by
Huang et al. [14]. In the proposed specification, the
browser permits cross-origin user interaction events (such
as mouse clicks, touch events, or keyboard events) only
if the event target (e.g., the Like button) was fully visible
for a minimum amount of time. The aim of the proposal
is to help applications defend against clickjacking attacks
with minimal impact on functionality.

We investigate whether the proposed UI safety speci-
fication will protect applications against clickjacking at-
tacks. Our key observation is that UI security attacks are
fundamentally attacks on limitations of human perception.
User interfaces strive for the integrity of user actions as
their invariant. In other words, any user interaction with
sensitive UI elements should succeed only if the user per-
ceived, understood, and made a conscious decision to take
the particular action. This process falls under the domain
of human perception and action.

We evaluate the proposed W3C specification against a
simple model of human perception and find a number of
limitations. Requiring that a UI element remain visible
for a certain duration is a necessary but not sufficient con-
dition for perception. For example, the W3C specification

1This defense is only turned on if the Facebook Site Integrity team
suspects fraud, presumably due to usability concerns.

1

does not adequately consider an attacker’s ability to direct
user attention. Instead, it implicitly assumes that users
perceive any interface visible for a minimum length of
time. In reality, a distracted user might not even notice
the presence of a sensitive UI element.

We develop five novel attacks that bypass the proposed
UI safety specification. Other than our first attack, all our
proposed attacks also work on touch devices. We present
our attacks and explain the underlying perceptual mech-
anisms in play. We also make all our attacks available
online [6].

The attacks we develop rely on multiple, distinct limi-
tations of human perception. Our intention is to demon-
strate the breadth of attack possibilities when we take a
perceptual view of UI security. For example, our attacks
vary from destabilizing pointer perception to attacking pe-
ripheral vision to even attacking limitations of the human
motor system.

To evaluate the practicality of these perceptual attacks,
we conduct a study with 568 participants on Amazon
Mechanical Turk. We find that our attacks have a success
rate ranging from 20% to 99%. This is despite the fact that
our attacks are prototypes and, as we discuss, a number
of improvements can make our attacks far more powerful.
Our experience developing these attacks also suggests
that a number of attacks remain unexplored.

Contributions. We make the following contributions:

• We revisit UI security attacks as attacks on human
perception.

• We present a simple model of human perception
and find a number of limitations in the UI safety
specification (Section 3).

• We systematically identify a number of novel UI
security attacks that bypass the defenses proposed in
the W3C UI safety specification (Section 4.

• We evaluate our attacks on 568 participants on Ama-
zon Mechanical Turk and find that our attacks have
success rates ranging from 20% to 99% (Section 5).

2 Background and Related Work
Ruderman first warned of UI redressing attacks as early
as 2002 [31–33].2 Zalewski [45] as well as Hansen and
Grossman [10, 11] drew further attention to the problem
by applying the attack to the Web, in an attack they call
Clickjacking. UI attacks are especially powerful since the
server sees the attacker’s fraudulent messages as legiti-
mate user actions.

2Note to reviewers: We gave a presentation on some preliminary re-
sults on these attacks at Blackhat USA 2013 and no paper was published.
We believe it is acceptable to give presentations on work-in-progress,
similar to giving talks at workshops.

In a typical clickjacking attack, the attacker convinces
a victim to click a seemingly innocent UI element, such as
a “skip ad” button. Unbeknownst to the user, the attacker
overlays the button with a transparent iframe containing
a sensitive button (such as a Facebook Like button or a
PayPal “Pay” button). The web browser delivers any user
clicks to the overlaid, transparent target.

Unknowingly interacting with a sensitive page causes
unintended actions, such as undesired sharing of informa-
tion [1, 9, 38, 42] or placing an order [14]. A recent study
of clickjacking vulnerabilities on top web sites showed
that three of the Alexa Top 10 web sites and 70% of
the top banking sites have no countermeasures against
clickjacking attacks [16, 44].

Firefox introduced time delays to installation of addons
and activation newer features (e.g., geolocation) to protect
against UI attacks. The browser disables the dialog but-
tons until the dialog is visible for a fixed amount of time.
Other than in Firefox, time delays have not been adopted,
possibly due to the adverse impact on usability. Browsers
like Google Chrome instead switched to relying on two
clicks to increase the difficulty of mounting a successful
clickjacking attack [7].

Initial web application defenses against clickjacking in-
cluded framebusting [36], in which a site uses JavaScript
to prevent other pages from including it as a frame. Rydst-
edt et al. identified a number of bugs in popular framebust-
ing code [36]. Browser vendors added support for HTTP
header based mechanisms to prevent framing, including
X-Frame-Options [19] and its successors [25].

Mechanisms such as X-Frame-Options and Framebust-
ing protect only standalone applications and not mashups
that rely on a shared canvas. For example, X-Frame-
Options fails to enforce UI security for applications such
as Facebook Like buttons that need to embed inside
third party frames. Similarly, these defenses do not af-
fect attacks that rely on cross-origin, overlapping win-
dows [47, 48].

For scenarios requiring a shared canvas, applications
can use two defenses which work on existing browsers:
confirmation dialogs and UI randomization. In the for-
mer, the application asks the user for confirmation with
a second dialog (a popup) before performing any sensi-
tive action [24, 43]. This impacts usability and Facebook
currently deploys this defense only if it already suspects
fraud. Further, it is unclear whether the confirmation
dialogs are also vulnerable to UI security attacks. Al-
ternatively, applications can randomize the location of
the sensitive buttons within their frame (as suggested by
Hill [12]) to reduce the success rate of attacks and make
large scale attacks easier to detect. We are not aware
of any application relying on this defense. ClearClick,
part of the NoScript Firefox extension, aims to protect its
users from clickjacking attacks by comparing a screen-

2

shot of the target element rendered in isolation with a
screenshot of the displayed page [24]. No browser de-
ploys a ClearClick like defense by default, possibly due
to false-positives [14].

To best of our knowledge, Zalewski was the first to in-
vestigate impact of human perception on UI security [47].
We share Zalewski’s motivation but provide a more com-
prehensive investigation of perceptual attacks and de-
fenses. Huang et al. presented a comprehensive study
of clickjacking attacks and defenses [14]. After identi-
fying a number of novel attacks, Huang et al. present
InContext, a model and a system to formalize the notion
of UI attacks in terms of “contextual integrity” of the user
interface. It relies on an invariant-based design requiring
distinct preconditions before allowing a user action.

InContext provides a defense against nearly all the
attacks previously discussed in the literature, including
all the attacks mentioned in the W3C’s list of clickjack-
ing threats [39]. Since the W3C UI safety specification
adopted the core ideas of InContext, we discuss them
together below. Huang et al. also suggested defenses that
they did not implement such as a “lightbox” around sensi-
tive UI elements. The W3C has not adopted the lightbox
defense either, possibly because it is not applicable to
touch devices.

2.1 The UI Safety Specification

The W3C UI Safety specification aims to provide a com-
prehensive defense against UI redressing attacks such as
clickjacking. First, it subsumes the X-Frame-Options
header into a frame-option Content Security Policy
(CSP) directive. As we discussed, this does not provide
protection to mashup applications such as Facebook Like
buttons and PayPal “Pay” buttons.

For mashup applications, the specification defines a
new input-protection directive in the Content
Security Policy header of a page. The application de-
fines a secure UI element via CSS selectors (with the
input-protection-selectors directive) or a se-
cure area with the input-protection-clip direc-
tive. These input-protection directives provide protec-
tion similar to the InContext defense, which Huang et al.
describe as three components of “contextual integrity”:
display integrity, temporal integrity, and pointer integrity.
Briefly, the browser needs to ensure that a secure UI
element/area be fully visible (display integrity) for a suffi-
cient amount of time (temporal integrity) before deliver-
ing the input event (e.g., mouse click).

Display Integrity. Display integrity requires that a
sensitive HTML element (such as the div defining a
Facebook button) appear fully visible for a secure click.
For example, if the button is part of a transparent iframe,
then it violates display integrity and the browser should
not deliver any clicks to the application. Another attack

that violates display integrity includes an attacker that
covers the sensitive button with a “clickthroughable” im-
age [2]. Other variations include overlaying only part of
the sensitive target [15, 40, 46].

The UI safety specification requires the browser
to take two screenshots: one only of the protected
frame as if viewed alone and one of what the user
sees. If in the two screenshots, the secure element
(defined via the input-protection-selectors
or input-protection-clip directives) does not
look the same (i.e., it is not fully visible in the second
screenshot) the browser should not deliver the input
(mouse/keyboard) event. The application can specify
a tolerance value to allow minor obstructions for
usability.

Temporal Integrity. Temporal integrity requires that
the sensitive UI element be visible on screen for a min-
imum amount of time before a user can interact with it.
Enforcing temporal integrity presumably allows a user
sufficient time to perceive visual changes. In the absence
of temporal integrity, an attacker can make the sensitive
UI button transiently visible just before the user clicks on
it [13, 14, 34, 35, 47, 49].

The UI safety specification requires the browser to
check for repaint events for the secure UI element within
a time period specified by the application using the
display-time directive.

Pointer Integrity. Another class of attacks occurs
due to the attacker tricking the user’s perception of the
pointer [3, 18, 28]. Pointer integrity requires that all
pointer feedback be visible and authentic to the user. By
hiding the real pointer and rendering a fake pointer ver-
tically displaced from the correct location, the attacker
can trick the user into clicking on a sensitive button unin-
tentionally. The user does not see the hidden real pointer,
so he follows the fake one. For touch devices, pointer
integrity is not required since the user’s finger serves as
the pointing element. Huang et al. also did not implement
any defense or detection mechanism for pointer integrity
as part of their browser implementation. The UI Safety
specification also only mentions that the browser should
check for hidden cursors before delivering the event. In
all our attacks, the cursor is fully visible before the click.

3 Perception and UI Safety
In this section, we present a simple model of human
perception and revisit the UI safety specification with a
perceptual view. In our model, human perception and
interaction is a three-step process: humans give attention
to a visual stimulus, come to understand what it means,
and then take an action. We do not claim that our model
is complete in any way—human perception is a deep
and complex topic, studied in the areas of neuroscience,
psychophysics, and human–computer interaction. Our

3

model of human perception, in comparison, is simple
(crude, almost), but suffices for our needs.

3.1 Attention

Attention enables us to zoom in on a specific part of the
visual scene [27] and increases the signal to noise ratio
of the cortical channels that transmit and process that
information [26].

The W3C UI Safety specification does not sufficiently
consider the importance of human attention.3 Invariants
such as display and temporal integrity ensure that the
sensitive UI element is visible for some duration, but
this requirement is moot if the user’s attention is on a
completely different area of the screen. In such cases, the
user does not notice the sensitive UI element at all.

We make this idea concrete with our “Peripheral Vision”
attack (Section 4.2): we trick the user into focusing on
one area of the screen while interacting with another. In
fact, directing user attention is a critical step in all our
attacks on user interfaces (Section 4). For example, in our
“Destabilizing Pointer Perception” attack (Section 4.1),
we rely on a number of distractors to reduce the likelihood
of the user noticing a possible attack. We discuss these
along with our attacks.

3.2 Visual Perception and Illusions

In our model, once a user places attention on a particular
area of the visual scene, she proceeds to process the image
of that area in detail. This provides another example of
the disconnect between human perception and current
defenses: current defenses assume that, if the sensitive
element was visible to the user, the user also correctly
perceived it. Unfortunately, visibility does not always
equate to the user correctly processing the scene.

For example, a visual illusion could cause a mismatch
between the user’s understanding of the scene and the UI
drawn by the browser. Our “Fast Motion Mislocalization”
attack (Section 4.4) relies on the flash-lag illusion to trick
the user into unintentionally clicking on a sensitive UI
element. A wide literature exists on human illusions,
providing a rich source of possible UI security attacks.

3.3 Taking Action: The Motor System

Once the user perceives a particular UI/visual stimulus,
she proceeds to interact with it via moving the mouse
and possibly clicking on it. The motor system is the
part of the central nervous system responsible for any ac-
tions/movement. Current defenses assume a synchronous
perception and motor system: if a user performs an action,
she must have processed the visual scene before the action
(the check-and-use paradigm).

3InContext [14] proposes a lightbox effect to grab attention, but only
for pointer integrity. We demonstrate that attention is necessary not just
for pointer integrity.

 Attacker Page

Figure 1: Illustration of our threat model. The attacker
controlled page frames a page with a sensitive action,
in this case, a Facebook Like button. The attacker has
full control over the page (marked with grey background)
except for the Facebook Like button frame (clear back-
ground), which must be fully visible for at least a second.

In reality, our motor system is often asynchronous—
we can take an action and process the visual scene after
the action. Our “Motor Adaptation” attack (Section 4.3)
trains the user’s motor system to perform a series of ac-
tions asynchronously and then sets up an attack to take
place during the actions but before the visual processing.

We stress that this asynchronous behavior goes beyond
the time-of-check to time-of-use vulnerability discussed
in the literature [14] as well as in the W3C specifications.
Previous work focused on the time window between the
user perceiving a visual scene and the motor system taking
an action, pointing out that an attacker could potentially
switch the visual scene in this small window. Our attacks
do not involve such a bait-and-switch; instead, our attack
trains the user to perform an action much further ahead in
the future and rely on the inability of the motor system to
easily cancel commands once given.

4 Perceptual UI Attacks
The discussion above suggests that the contextual integrity
conditions, while necessary, are not sufficient for ensuring
UI security. In this section, we systematically investigate
different, orthogonal dimensions of human perception and
identify new UI attacks that bypass current defenses.

We present five new attacks that do not violate contex-
tual integrity, while still tricking the user into unintention-
ally clicking on a Facebook Like button. We also discuss
the perceptual model we use to develop and refine each
attack. Our explanations are not comprehensive; instead,
they aim to provide a simple model to help understand
our attacks.

Threat Model. Figure 1 illustrates our threat model.
We focus on web applications that need to share part of
the screen real estate with a third party, possibly untrusted
application. For our attacks, we use the example of Face-
book Like buttons, but the same concept applies for other
sensitive targets that need to be embedded in third party
pages (e.g., Twitter Follow buttons). In our threat model,
the whole Like button frame must remain fully visible for

4

(ii)

(i)

Figure 2: Workflow for our pointer destabilization attack.
At first, (i) displays the instructions, and (ii) is hidden.
When the player clicks the green button in the lower left,
(i) disappears and (ii) appears. This ensures that the cursor
approaches from a controlled direction (superimposed as
the red arrow).

at least a second before a jacked click. We believe that
this is a stronger model than what applications will adopt.
For example, Facebook is likely to turn on UI safety only
for the Like button and not the whole frame.

We do not consider applications that use X-Frame-
Options to disable embedding. We believe these appli-
cations could also be vulnerable to related attacks via
windows and popups, although, the window decorations
around such popups will likely reduce the success rate.

Our investigation in this section is nascent. The attacks
we present are only prototypes. A real attacker can likely
create powerful, convincing attacks. Further, the large
number of effects observed by studies of human percep-
tion suggests that other attacks are possible. Our aim is
to focus on the breadth of possible attacks and we inves-
tigate limitations of human perception along orthogonal
dimensions. For instance, we investigate limitations of
the motor system in Section 4.3 and limitations of the
visual system in Section 4.2.

4.1 Destabilizing Pointer Perception

The key idea of this attack is destabilizing the user’s per-
ception of the pointer by transiently showing an image
of a mouse-pointer moving in a different direction from
the real cursor. Our attack qualitatively differs from the
fake pointer attacks discussed by Huang et al. [14] and
the similar phantom cursor attacks discussed in the W3C
wiki [39]. Previous work focused on a fake (or phan-
tom) pointer that followed the hardware pointer but at a
constant displacement.

Instead, our attack creates a pointer that moves in a
direction different for a transient duration. This momen-
tarily confuses the user who makes a sudden correction;
our attack relies on this sudden correction. We present it
as an example of how a better understanding of human
perception can help guide the design of strong UI attacks.

Figure 3: Pointer movement in our pointer destabilization
attack. The solid line depicts the path of the hardware
cursor, while the dashed line depicts the path of the fake
cursor. Section 4.1.1 provides details about each labeled
point.

4.1.1 Attack Setup

Figure 2 depicts the attack setup. The attacker positions
the user’s pointer at the bottom left of the screen via a
green ‘Start Playing’ button. Once the user starts playing,
the attacker requests that the user click on a link (“click
here” in Figure 3). The previous click ensures that the
user’s mouse starts its movement toward the specified
link from the bottom left of the screen. When the pointer
(traced with a solid line in Figure 3) is close to the web
link (starting at point (a) in Figure 3), the attacker hides
it and shows a fake image of a pointer. This image only
remains visible for a short time, while the user closes the
final distance to the link. This fake pointer image moves
with the hidden real pointer, but in a different direction
(path of fake pointer traced with dotted line in Figure 3,
starting at point (b)).

The user’s natural reaction is to correct for this leftward
error, and the user moves the mouse to the right in a
sudden movement (point (c) in Figure 3). This moves
the hardware pointer over the Like button, where the real
pointer reappears. Since our attack page does not receive
any pointer movement events after this, we extrapolate
the fake pointer’s last few pixels of movement. Since the
user’s original intent was clicking on the link, continuing
that task results in a mistaken click on the Like button
(point (d) in Figure 3).

4.1.2 Understanding the Attack

The attacker-controlled fake pointer image appears near
the link target (“click here”) and smoothly replaces the
original pointer. This makes it difficult for the user to
realize that a replacement pointer exists. Seeing the (re-
placed) pointer not following the intended path, the user

5

naturally tries correcting the pointer and ends up taking
the real pointer over the Like button.

One concern to a successful attack is the appearance
of the real pointer when it reaches the like button. A
user may notice the appearance of the real pointer and
abort. To improve chances of success, our attack relies on
a number of small moving objects near the Like button
to steal user attention away from the appearance of the
real pointer. We discuss these in more detail since such
attention grabbing techniques are useful in a wide number
of UI attacks.

Filtering. Suppose that when the user starts her task,
a moving background near the like button catches her
attention but carries no relevant information. Quickly, the
brain primes itself to ignore the area around the Like but-
ton as a source of unnecessary distractions, a phenomenon
known as filtering [8]. Filtering is critical for conserving
human attention. Thus, when the real pointer suddenly
appears on top of the like button, the user does not notice
it.

Crowding. Background motion additionally helps re-
duce the chances of the user identifying the real pointer,
despite detecting it, due to a phenomenon referred to as
“crowding” [20,30]. (This is in contrast to filtering, which
reduces the chances of the user detecting the real pointer.)
In crowding, stimuli surrounding a target make the tar-
get stimulus less visible. Crowding is most effective in
peripheral vision.

Summary. Adding background motion provides two
advantages to the attacker, filtering and crowding. Fil-
tering reduces the chances of the user detecting the real
pointer on the Like button. Even if the cortex detects the
appearance of the real pointer, crowding causes the cortex
to fail to identify it as such. Instead, the cortex interprets
the real pointer as another moving, distracting stimulus.

4.2 Attacking Peripheral Vision

Our second attack targets the low resolution of peripheral
vision. The key idea of the attack is to convince the user
to focus on one area of the screen, while interacting with
another. This attack is a simple demonstration of the abil-
ity of an attacker to direct user attention for clickjacking
attacks.

4.2.1 Game Setup

Figure 4 depicts a frame in our attack and Figure 5 illus-
trates the attack in a timeline. To play this game, a player
must leave her mouse in a designated sensor area in the
bottom left corner of the screen (Figure 4) and watch a
main game area in the top right corner of the screen. A
series of blocks drops through the instruction area towards
two holes (Figure 5 (a)). The player must click the left or
right mouse button in the sensor area as the blocks reach
the left or right hole.

Figure 4: A screenshot of our peripheral vision attack
game.

pause

(c)

(b)

(a)

time

Sensor Blocks Player

Figure 5: Timeline of the peripheral vision attack game.
In normal operation (a), the player interacts with a click
sensor. For the attack, the page replaces the sensor with a
Like button at time (b) leading up to a left-click instruction
(c).

This game trains the user to focus on one corner of
the screen, while clicking in another. After some time
playing the game, the attacker replaces the sensor with
a Like button (Figure 5 (b)). This replacement takes
place during a pause in the block sequence followed by a
block heading to the left window (Figure 5 (c)). The user
naturally clicks the left mouse button.

4.2.2 Understanding the Attack

Peripheral vision refers to the part of the field of view that
occurs outside the center of gaze, particularly at the edges
of the human field of view. Spatial resolution is low in
peripheral vision, and we present an attack utilizing this
limitation. The key to our attack is training the user to
carry out actions in her peripheral vision, while relying
on the stimulus in the center of vision.

The pause after the replacement allows the attacker to
maintain the UI safety invariants. Since the user focuses
her gaze on the main game area, she does not notice the
replacement in the sensor area and clicks on it when she

6

Figure 6: A screenshot of our adaptation attack game. We
include additional distractors (discussed in Section 4.1.2)
to make the attack hard to notice.

sees the next block dropping to the left hole.

4.3 Motor Adaptation

Next, we discuss attacks that rely on motor system lim-
itations. We focus on attacks made possible due to the
phenomenon of motor adaptation. Adaptation, in general,
refers to our sensor and motor systems optimizing for
repeated stimuli and actions. Motor adaptation trains the
user to perform a sequence of repetitive actions on cue,
which makes us vulnerable to clickjacking attacks (e.g.,
the click-move-click pattern we explain below).

4.3.1 Game Setup

We create a game that adapts players to a repeated stimu-
lus and trains them to perform a sequence of actions. Fig-
ure 6 depicts a screenshot of our game. When the game
starts, we present the player with an asteroid, which the
player can destroy for one point by clicking it. Clicking
on the asteroid also creates a mineral object at a constant
displacement above the former location of the asteroid.
This mineral automatically disappears after a short time.
If the player clicks the mineral before it disappears, she
gets three additional points.

We make the lifetime of the mineral short, so that it
will disappear if the player waits for multiple round trips
between the sensor and motor systems. A short time
after the mineral disappears, another asteroid appears in a
random location.

The game continues this way for the duration of the
experiment. As the player adapts to this repeated asteroid-
mineral stimulus, it becomes much easier for her to exe-
cute a practiced click-move-click sequence of actions to
achieve success. As the player slowly builds up her ability
with the click-move-click sequence, the game increases in
difficulty by gradually reducing the time for which each
mineral stays visible.

4.3.2 Understanding the Attack

Every movement we make corresponds to a population of
neurons in our motor system. Activation of such a popula-
tion causes us to execute the corresponding movement. In
motor adaptation, the populations that execute the differ-

Figure 7: Stages of the adaptation game. Left: player
clicks on asteroid. Middle: asteroid explodes and a min-
eral appears at a constant displacement above. Right:
(attack) Like button appears at usual displacement; min-
eral appears unusually low.

ent actions in the sequence get connected through a chain.
Neurons controlling individual, sequential movements
not only encode a particular movement, but also the next
movement in the sequence [17, 22].

This is a form of redundant coding in our brain: the
earlier commands (click) also encode information about
later commands (move-click). This form of encoding
makes our command system more robust against noise.
On the other side, this makes canceling mid-way through
a sequence of actions difficult, since the command for the
first action carries information for the next action.

In our game setup, it is difficult, if not impossible, for a
player to click the asteroid, notice the mineral, point to the
mineral, and click again as separate steps. After a couple
trials of performing the click-move-click sequence, the
brain starts to adapt a new chain to encode this sequence.

Our game design aims to ease such an adaptation. For
example, the mineral always appears at a fixed displace-
ment from the asteroid. Given the time delay between
the brain issuing the commands and our motor system
executing it, our brain creates a chain such that the entire
sequence executes before the second target disappears.

4.3.3 Attack

As the player adapts to this repeated asteroid-mineral
stimulus, it becomes much easier for her to execute a
practiced click-move-click sequence of actions to achieve
success. At this point, the game executes the attack, which
is a variation on the normal behavior. The game places a
special asteroid under a Facebook Like button, such that
the normal mineral displacement would place the mineral
where the Like button is.

When the player clicks this special asteroid, it creates
a mineral at a smaller displacement (i.e., positioning it
between the asteroid and the Like button, illustrated on
the right of Figure 7). In a successful attack, the player
executes the click-move-click sequence starting with this

7

Figure 8: A screenshot of our flash-lag attack game. As
before, we also include additional distractors on the page
to reduce the likelihood of the user noticing the attack.

special asteroid. The movement places the cursor on the
Like button, and the player clicks the Like button with the
second click.

Our attack exploits the fact that the human brain adapts
to repeated actions, as discussed above, and there is a
known lag between the brain sending a command and
our motor system carrying it out. The success of the
attack requires that the command sequence (“click-move-
click”) leave the brain before the player notices the Like
button. On noticing the Like button, the brain sends a
“stop” command to our motor system, but it often cannot
stop the sequence in time.

The UI safety specification cannot protect against this
attack, since we make the sensitive target visible for a
while. When the Like button appears in advance for the
attack, the user is focused on playing the game in an-
other part of the screen. When the user’s attention does
switch towards the sensitive click target, the motor system
adaptation gives the user no time to correct.

4.4 Fast Motion Mislocalization

Human perception inherently includes a model of inertia.
For example, flash lag is a visual illusion in which a
moving object appears displaced from its true location,
as we perceive it will move further [23]. The key idea of
our attack is instructing the user to click a moving object;
due to the flash lag illusion, the player can overshoot the
moving object and instead click on a Like button beyond
the object.

4.4.1 Game Setup

This game starts with an asteroid in the center of the play
area. An arrow near the asteroid spins around and stops in
a random orientation. When the arrow stops, the asteroid
explodes in a flash and a fast-moving mineral shoots out
of the asteroid in the direction of the arrow, travels for a
fixed distance, and disappears shortly after reaching its

destination.
The player must click on the mineral at its destina-

tion to score points. After the mineral disappears (either
shortly after stopping or when the player clicks it), a new
asteroid appears, and the arrow starts spinning around it
again. This process repeats itself for the duration of the
experiment.

The key to our attack is the user over-shooting the fast
moving mineral due to the flash-lag illusion. Our game
adjusts itself to the player’s skill level. The speed of the
mineral adjusts itself based on the results of previous
trials: it speeds up every time the player successfully
clicks it, and it slows down if it disappears without the
player clicking it.

4.4.2 Understanding the Attack

A simple explanation of motion mislocalization is that
processing of the motion signal in our brain takes time.
Such a delay would result in the brain seeing the objects
lag behind their true location: the object had already
moved by the time the brain processed its current location.

Since humans obviously do not face this issue, Ni-
jhawan [29] suggested that the brain compensates for the
delay by extrapolation: the brain reconstructs the loca-
tion of moving objects by representing them ahead of the
location measured by cortical processing.

One issue with our game setup is the interplay of the
motor and visual system. Flash-lag is a visual illusion;
experiments investigating flash-lag asked the user to recall
visually the position of the moving object (see [5] for an
online demo).

Our game involves tricking the user’s motor system to
take an action. Visual illusions do not always trick our
motor system. To mitigate this concern, our attack relies
on fast clicking tasks where the brain generates motor
commands purely based on inaccurate visual information.
Once the commands are generated, the motor system
does not have any chance to correct them based on visual
feedback.

4.4.3 Attack

Due to the flash lag illusion, the player tends to overshoot
the mineral and click ahead of it. We create an attack
out of this by placing a Like button just beyond the point
where the mineral would disappear (as illustrated on the
bottom of Figure 9), so that the overshoot results in the
player clicking the sensitive target.

Our attack does not violate any of the integrity con-
straints from the UI safety specification. The Like button
is visible for a noticeable amount of time, but the user is
focused on the game and does not notice the appearance
of the Like button. The attack is successful when the user
wants to click on the mineral, but overshoots due to the
flash-lag illusion.

8

Figure 9: Stages of the flash-lag game. Left: arrow
spins around asteroid. Middle: asteroid explodes and a
mineral shoots out to a constant distance in the direction
of the arrow; the player tends to overshoot this mineral.
Right: (attack) Like button appears just beyond mineral
destination; mineral moves as usual.

Figure 10: A screenshot of our click prediction attack
game.

4.5 Visual Cues and Click Timing

Another possible attack is to set up a visual cue to control
the timing of a user click. Combined with an appropriate
position of the mouse, this cue allows an attacker to trick
the user into clicking the target (Like button).

4.5.1 Game Setup

Figure 10 depicts our game setup. An asteroid moves
randomly around the play area and flashes red on a reg-
ular interval. The game instructs the player to click on
the asteroid while it is red. The game’s scoring rewards
clicking on the asteroid while it is red. This setup aims to
adapt the player to click the asteroid as soon as the color
of the asteroid changes.

Attack. After some time spent training the user, the
attacker moves the moving object across the like button.
To ensure visual integrity, the asteroid moves under the
Like button. The attacker then changes the color of the
asteroid while it moves across and under the Like button.
The user’s brain, adapted to clicking on the color change,
clicks on the Like button by mistake.

4.5.2 Understanding the Attack

A successful attack is complicated by the presence of
the Like button, which acts as an inhibitory signal—on
noticing it, the user tries to cancel the click command

Figure 11: Events in the click timing game. Top: Clicking
on the asteroid while it is not red penalizes the player.
Middle: Clicking on the asteroid while it is red rewards
the player. Bottom: (attack) The asteroid passes through
a Like button while it flashes red.

cued by the color change via a “stop” signal that we
discussed earlier. We rely on the race model of response
inhibition [21] to understand and improve success of our
attack.

When the user sees the like button (stop signal) and the
flashing red asteroid (go signal), three factors determine
the success of the attack: Stop signal delay, Go signal
reaction time, and Stop signal reaction time.

• Stop signal delay refers to the temporal delay be-
tween the brain noticing the color change (go signal)
and seeing the like button (stop signal).

• Go signal reaction time refers to the users reaction
time to the Go signal in the absence of any stop
signal. In this case, this corresponds to the time
between the color change and the user deciding to
click.

• Finally, the stop signal reaction time refers to the la-
tency of the stop process—the time between the user
noticing the like button and stopping the click. While
we cannot directly measure the stop signal reaction
time, we can infer it based on the race model.

The chance that our attack succeeds, i.e., the action
escapes inhibition and the user clicks on the like button,
increases with increasing stop signal delay and reaction
time and decreases with increasing go signal reaction time.
We can increase stop signal delay by adding changing
stimuli around the like button, which results in attention
diversion and delays in noticing the Like button. Training
the user to click as soon as the color changes decreases
the go signal reaction time.

5 Evaluation
We implemented prototypes of our attacks and evaluated
their effectiveness. We have also made all our attacks

9

available online [6]. We remind the reader that all the per-
ceptual limitations we discussed are statistical by nature.
While previous experiments found that these limitations
affect a large number of humans, none of these limitations
are certain to affect all humans.

Experimental Setup. To measure how effective our
attacks are in tricking users into clicking on a Like button,
we relied on an Amazon Mechanical Turk experiment
similar to previous work [14]. In July of 2013, we re-
cruited around 130 users for every attack discussed above.
Our advertisement offered participants $0.20–$0.30 for
a task described as “Play our 2min HTML5 game.” We
only allowed participants with Google Chrome or Mozilla
Firefox browsers, since we tested our attacks on those
browsers. We hosted our attacks on a third-party domain
with no affiliation to our university. Our advertisement
told participants that the task would take approximately
2 minutes. Participants had a chance to play one of our
games for up to two minutes, or until they reached a game-
specific goal condition. The HTML5 game simulated an
attack with a fake Like button.

We then presented the users with a follow-up survey,
with the same questions used in Huang et al.’s study:

1. Did you see the Like button in the game you played?

2. (If No to 1) Would you approve if your Facebook
wall showed that you like this game?

3. (If Yes to 1) Did you click on the Like button?

4. (If Yes to 3) Did you intend to click on the Like
button?

For our evaluation, we filtered out repeat participants
between experiments. Second, using the survey, we also
filtered out participants who knowingly clicked our fake
Like button.

Results. Table 1 presents the attack success rates for
each of our attacks. From the users who answered “No”
to survey question 2, 3, or 4 (n2), we computed the attack
rate for each game as the fraction who ended the game by
clicking the Like button. Our attack rates range from 20%
to 99%. Other than the “Destabilizing Pointer Perception”
(Section 4.1) attack, all our attacks are applicable to touch
devices, which also lack a number of defenses available
on pointer-based devices (Section 6.2).

Our follow-up survey also collected demographic infor-
mation such as age, type of device, and sex. We did not
find any correlation between these demographic factors
and the success rates of our attacks so we do not discuss
them any further.

Ethics. Our experiment was approved by our univer-
sity’s review board (IRB) with the protocol ID 2013-02-
4988. Our experiment design aimed to pay participants at
the maximum hourly minimum rate in California. Most

Attack Name n1 n2 Attacked
Destabilizing Pointer 122 71 99%
Peripheral Vision 103 86 55%
Adaptation 108 90 20%
Fast Motion 111 79 29%
Controlling the Timing 124 62 53%

Table 1: Success Rates of our attack. Starting from 150
participants for each attack, n1 denotes number of partic-
ipants after filtering for repeat participants; n2 denotes
the number of participants after we removed participants
who reported in a follow-up survey that they knowingly
clicked the Like button.

experiments took much less than 2 minutes to finish. The
user’s private data is never at risk in our experiment: our
fake Like button is non-functional and only visually simi-
lar to the Facebook Like button. If a participant clicked
the fake Like button, we ended the experiment immedi-
ately and navigated to a debriefing page explaining the
attack and that the user’s data was never at risk. Thus,
user anxiety, if any, was transient. Our experiment also
did not collect any private data for the evaluation of our
games.

6 Discussion and Future Work
Our attacks demonstrate the practicality of perceptual
attacks on user interfaces. In this section, we discuss
possible defenses against perceptual attacks. We find
that only a two-click requirement is able to provide a
strong defense, although we recommend randomizing the
location of the second click. Further, we also find that a
number of previously proposed defense techniques do not
work well for touch interfaces, suggesting more work on
enforcing UI security on touch devices. We discuss this
and other directions for future work below.

6.1 Architectural Defenses

A number of proposals already exist to defend against
clickjacking attacks, only a few of which are in use [14,
39]. Our attacks bypass the key defense of visual and
temporal integrity used in the W3C UI Safety specifica-
tion (as well as InContext [14] and ClearClick [24]). We
discuss other defenses below.

Disabling customization. One simple defense against
our destabilizing pointer perception attack is to disallow
cursor customization when any sensitive UI is present, a
defense also presented in Huang et al. [14]. This defense
also has a usability impact: video providers and game
designers could no longer hide the pointer if their page
has a Like button.

Lightbox. The browser could gray out everything but
the sensitive UI (or otherwise try to draw attention to
the sensitive UI) when the mouse pointer moves over the

10

sensitive UI [14]. First, an attacker could desensitize users
to this cue by using the same effect repeatedly before the
attack. For example, in our peripheral vision game, an
attacker could train the user to expect a lightbox like effect
when a block starts falling. Second, this defense also has
a tremendous usability impact, which could also explain
why it has not achieved any adoption over the years.

Time Delay. Another defense requires that the cursor
stay on the sensitive element for a fixed amount of time.
This imposes a significant usability cost, because the user
cannot do anything else while waiting for this timeout.
We believe this usability cost is the reason Firefox is
the only browser to uniformly implement this delay for
security sensitive interactions. Additionally, this defense
does not affect our attack on peripheral vision since the
cursor stays on the Like button for the duration of the
game.

Activation gestures. A similar defense requires that
the cursor move in, out, and back into the sensitive ele-
ment before enabling the element. We expect that this
would be hard to explain to a first time user, since it is
such a novel gesture. Furthermore, a variant of our motor
adaptation game could adapt a player to performing this
gesture in preparation for the attack.

Two Clicks. One defense that could protect against
our attacks on touch interfaces is requiring, for every
sensitive action, a second confirmation click. This is a
defense already adopted by Chrome for its mixed-content
dialogs [7]. Our motor adaptation attack could defeat this
defense if the confirmation interface is in a predictable
location. As a result, the second confirmation click should
be in an unpredictable location. This negatively impacts
usability.

Web services can already implement the two-click re-
quirement with window popups. The fact that popular
services like Facebook and Twitter have not implemented
this defense suggests that they are not willing to accept
the usability impact of requiring two clicks, let alone
randomizing the location of the second click.

6.2 UI Security of Touch Interfaces

From our examination of architectural defenses, we found
that most defenses target pointer-based interfaces and do
not work well with touch interfaces. For example, the
Lightbox defense, in which the browser darkens out an
area when the pointer moves onto a secure element, has
no equivalent for touch devices. Adapting the Activation
Gesture and Time Delay defenses is possible, but we think
such an interface would be awkward on touch devices. In
fact, we believe only the two-click defense works equally
well in touch and pointer-based interfaces.

Consider again our model of human perception and
interaction. The location of the pointer acts as a good
indicator for the current state of the motor system. This

signal is absent on touch interfaces, making defending
against attacks harder.4

In fact, we conjecture that in typical situations, the cur-
rent location of the pointer also acts as a good indicator
of the user’s attention. One class of UI security attacks
relies on violating this assumption. For example, our
peripheral vision game tries to make the user focus on
an area of the screen far away from the location of the
pointer. Pointer-based defenses such as Lightbox, Ges-
tures etc. aim to enforce this invariant; namely, that the
user’s current pointer location be where he/she focuses
his/her attention (e.g., by darkening the other areas of the
screen).

6.3 Future Defenses

The relative inability of current and proposed defense
techniques to work on touch devices suggests the need
for new proposals for UI security on touch devices. Our
attacks serve as a cautionary tale for the design of UI
security mechanisms for touch interfaces. Similar to how
pointer location serves as a crude, bypassable indicator of
user perception, defenses for touch interfaces should not
assume that a user pressing on a part of the screen implies
the user paid attention and intentionally interacted with it.

A key reason for the low adoption of strong defenses is
the usability impact of requiring more effort from the user
to demonstrate that she is actually paying attention. A
better model of human perception can reduce the number
of times we require more effort from the user.

The UI Safety specification uses simple image com-
parison techniques to decide whether an image was fully
visible or not. A natural next question is whether ad-
vanced computer vision techniques could mitigate the
attacks we presented. We forsee two problems.

First, defending against our attacks would require cap-
turing screenshots of the whole screen for (say) five sec-
onds. On newer machines with massive resolutions (up
to 2880x1800, or 5 million pixels), this would consume
significant CPU and memory just to collect the data, let
alone analyze it. In contrast, the UI Safety specification
only required screenshots of the security sensitive ele-
ment, which is far smaller.

Second, a simple image comparison would not suffice
for protection against our attacks: the algorithm would
have to attempt to recreate human perceptual limitations
with sufficient precision. Given the complexity and depth
of human perception, this is a challenging research area.

For instance, a vision algorithm could keep track of
repeated actions and block clicks on a sensitive button if
it detects the possibility of adaptation. While such tech-
niques could work for specific attacks, it is not clear if a
vision-based technique can reproduce all other limitations

4Of course, absence of a pointer makes attacks such as our first
attack (“Destabilizing Pointer Perception”) impossible too.

11

of human perception such as color cues and illusions. Ad-
ditionally, humans will not notice transient changes in the
scene (e.g., hiding a fake pointer for a few frames), while
the same might confuse a vision algorithm.

6.4 Future Attacks

Our attacks are prototypes. In this section, we first discuss
possible avenues that a malicious actor could rely on to
increase success rates of the attacks we presented. Next,
as an example of the breadth of human perception, we
present two new ideas for attacking human perception.

6.4.1 Improving our Attacks

We believe that our experimental evaluation only provides
a lower bound on the effectiveness of our proposed attacks.
We present three reasons why we believe an attacker can
achieve a far higher success rate with our attacks.

UI safety and Perceptual Attacks. We designed our
attacks against a particularly strong form of the UI safety
defense. The Like button in our attack was visible for a
minimum of 1 second and up to 3 seconds in some cases.
This is higher than the default display-time value
of 800ms in the specification. In fact, due to usability
concerns, it is unlikely that real-world web applications
will rely on values above 500ms [14, 25, 35]. This sug-
gests that attacks on real-world applications will achieve
a higher success rate.

Combined Attack. Our attacks investigated limita-
tions of human perception along orthogonal dimensions,
namely, predicting click location due to limitations of mo-
tor system (Section 4.3), predicting click location due to
limitations of the visual system (Section 4.4), predicting
click times (Section 4.5), peripheral vision (Section 4.2),
and a replaced pointer (Section 4.1). Our intention was to
demonstrate the breadth of possibilities when we take a
perceptual view of UI security. A malicious actor inter-
ested in relying on such attacks is likely to combine them
into a powerful perceptual attack with a high success rate.

Complex Attacks. Our attack design is simple. For
instance, we do not collect any data from the user as she
plays the game. We believe such data collection can help
dynamically tweak our attacks as well as help iterate over
our designs to improve our success rates even more. An
attacker could also use better models of pointer movement
and click prediction (e.g., see Zalewski [47]) to improve
attack accuracy. Collecting more data about our attacks
and reasons for their success/failure could be a source of
ideas for novel attacks, an idea we discuss next.

6.4.2 Novel Attacks

We stress that our exploration of the limitations of hu-
man perception is nascent: a number of other attacks
are possible due to the breadth and complexity of human
perception. We give a couple of ideas next.

Change Blindness. Change blindness is a well-studied
psychological phenomenon in which a user fails to notice
difference in two images [41]. An attacker can train a user
to click on a particular button, move the mouse to another
area, and move back and click on the same button again.
The attacker can then switch the button with a sensitive
UI element (e.g., a Like button). By setting up the attack
webpage appropriately, the attacker can ensure that the
user does not notice the switch, due to change blindness.

Background Motion. Background motion results in
mislocalization of a target [4]. This effect works particu-
larly well in goal-directed tasks, when a user is trying to
move towards a particular goal. For instance, an attacker
can place a simple asteroid on a page and entice a user to
click on it. To the right of the asteroid is a Facebook Like
button.

When the user’s mouse approaches the asteroid, a min-
eral object appears near the asteroid and quickly moves
away to the left. This creates an illusion that the asteroid
has moved right, to compensate for the mineral’s momen-
tum. The asteroid actually remains stationary, as does the
Like button. In a successful attack, the user corrects the
mouse to accommodate the perceived rightwards motion
and ends up clicking the Like button.

7 Conclusion
We presented a study of UI security on a perceptual level.
A perceptual perspective on UI attacks helps identify lim-
itations of current defenses against UI attacks as well as
identify a number of novel UI attacks. Our attacks exploit
diverse aspects of human perception such as adaptation,
attention, and peripheral vision. An evaluation on Ama-
zon Mechanical Turk showed success rates between 20%
and 99%. We discussed the efficacy of current and pro-
posed defenses and found them lacking, particularly for
touch devices. Our work suggests the need for more work
on improved defenses and mechanisms to better model
the human perceptual system.

12

References
[1] ABOUKHADIJEH, F. How to: Spy on the webcams

of your website visitors. http://feross.org/
webcam-spy/, 2011.

[2] AUN, L. C. Clickjacking with pointer-events.
http://jsbin.com/imuca, 2012.

[3] BORDI, E. Proof of concept - cursorjacking (no-
script). http://static.vulnerability.
fr/noscript-cursorjacking.html.

[4] BRENNER, E., AND SMEETS, J. B. Fast responses
of the human hand to changes in target position.
Journal of motor behavior 29, 4 (1997), 297–310.

[5] BUONOMANO, D. Brain Bugs: How the Brain’s
Flaws Shape Our Lives. WW Norton, 2011.

[6] Demo of perceptual ui attacks. http://wh0.
github.io/safeclick-blast/.

[7] EVANS, C., AND SEPEZ, T. Ending mixed
scripting vulnerabilities. http://blog.
chromium.org/2012/08/ending-mixed-
scripting-vulnerabilities.html.

[8] FRIEDMAN-HILL, S. R., ROBERTSON, L. C., DES-
IMONE, R., AND UNGERLEIDER, L. G. Posterior
parietal cortex and the filtering of distractors. Pro-
ceedings of the National Academy of Sciences 100,
7 (2003), 4263.

[9] GOODIN, D. Twitter attack exposes awe-
some power of clickjacking. http:
//www.theregister.co.uk/2009/
02/13/twitter_clickjack_attack/,
2009.

[10] HANSEN, R. Clickjacking details. http:
//ha.ckers.org/blog/20081007/
clickjacking-details/, 2008.

[11] HANSEN, R., AND GROSSMAN, J. Click-
jacking. http://www.sectheory.com/
clickjacking.htm, 2008.

[12] HILL, B. Adaptive user interface ran-
domization as an anti-clickjacking strategy.
http://www.thesecuritypractice.
com/the_security_practice/papers/
AdaptiveUserInterfaceRandomization.
pdf, 2012.

[13] HUANG, L.-S., AND JACKSON, C. Clickjacking
attacks unresolved. http://mayscript.com/
blog/david/clickjacking-attacks-
unresolved, 2011.

[14] HUANG, L.-S., MOSHCHUK, A., WANG, H. J.,
SCHECHTER, S., AND JACKSON, C. Clickjack-
ing: attacks and defenses. In Proceedings of the
21st USENIX conference on Security symposium
(Berkeley, CA, USA, 2012), Security’12, USENIX
Association, pp. 22–22.

[15] IMPERVA. Clickjacking (aka. ui redress-
ing). http://www.imperva.com/
resources/glossary/clickjacking_
ui-redressing.html.

[16] INFOSECURITY. Clickjacking threat-
ens two-thirds of top 20 banking sites.
http://www.infosecurity-magazine.
com/view/29610, 2012.

[17] ISODA, M., AND TANJI, J. Cellular activity in the
supplementary eye field during sequential perfor-
mance of multiple saccades. Journal of neurophysi-
ology 88, 6 (2002), 3541–3545.

[18] KOTOWICZ, K. Cursorjacking again.
http://blog.kotowicz.net/2012/
01/cursorjacking-again.html, 2012.

[19] LAWRENCE, E. Ie8 security part vii: Click-
jacking defenses. http://blogs.msdn.
com/b/ie/archive/2009/01/27/ie8-
security-part-vii-clickjacking-
defenses.aspx, 2009.

[20] LEVI, D. M. Crowding-an essential bottleneck for
object recognition: A mini-review. Vision research
48, 5 (2008), 635.

[21] LOGAN, G. D., AND COWAN, W. B. On the ability
to inhibit thought and action: A theory of an act of
control. Psychological review 91, 3 (1984), 295.

[22] LU, X., MATSUZAWA, M., AND HIKOSAKA, O. A
neural correlate of oculomotor sequences in supple-
mentary eye field. Neuron 34, 2 (2002), 317–325.

[23] MACKAY, D. Perceptual stability of a stroboscop-
ically lit visual field containing self-luminous ob-
jects.

[24] MAONE, G. Hello clearclick, goodbye click-
jacking! http://hackademix.net/2008/
10/08/hello-clearclick-goodbye-
clickjacking/, 2008.

[25] MAONE, G., HUANG, D. L.-S., GONDROM,
T., AND HILL, B. User interface safety.
https://dvcs.w3.org/hg/user-
interface-safety/raw-file/tip/
user-interface-safety.html.

13

http://feross.org/webcam-spy/
http://feross.org/webcam-spy/
http://jsbin.com/imuca
http://static.vulnerability.fr/noscript-cursorjacking.html
http://static.vulnerability.fr/noscript-cursorjacking.html
http://wh0.github.io/safeclick-blast/
http://wh0.github.io/safeclick-blast/
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
http://blog.chromium.org/2012/08/ending-mixed-scripting-vulnerabilities.html
http://www.theregister.co.uk/2009/02/13/twitter_clickjack_attack/
http://www.theregister.co.uk/2009/02/13/twitter_clickjack_attack/
http://www.theregister.co.uk/2009/02/13/twitter_clickjack_attack/
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://ha.ckers.org/blog/20081007/clickjacking-details/
http://www.sectheory.com/clickjacking.htm
http://www.sectheory.com/clickjacking.htm
http://www.thesecuritypractice.com/the_security_practice/papers/AdaptiveUserInterfaceRandomization.pdf
http://www.thesecuritypractice.com/the_security_practice/papers/AdaptiveUserInterfaceRandomization.pdf
http://www.thesecuritypractice.com/the_security_practice/papers/AdaptiveUserInterfaceRandomization.pdf
http://www.thesecuritypractice.com/the_security_practice/papers/AdaptiveUserInterfaceRandomization.pdf
http://mayscript.com/blog/david/clickjacking-attacks-unresolved
http://mayscript.com/blog/david/clickjacking-attacks-unresolved
http://mayscript.com/blog/david/clickjacking-attacks-unresolved
http://www.imperva.com/resources/glossary/clickjacking_ui-redressing.html
http://www.imperva.com/resources/glossary/clickjacking_ui-redressing.html
http://www.imperva.com/resources/glossary/clickjacking_ui-redressing.html
http://www.infosecurity-magazine.com/view/29610
http://www.infosecurity-magazine.com/view/29610
http://blog.kotowicz.net/2012/01/cursorjacking-again.html
http://blog.kotowicz.net/2012/01/cursorjacking-again.html
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
http://hackademix.net/2008/10/08/hello-clearclick-goodbye-clickjacking/
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html

[26] MORAN, J., AND DESIMONE, R. Selective atten-
tion gates visual processing in the extrastriate cortex.
Frontiers in cognitive neuroscience 229 (1985), 342–
345.

[27] MOTTER, B. C. Focal attention produces spatially
selective processing in visual cortical areas v1, v2,
and v4 in the presence of competing stimuli. Journal
of Neurophysiology 70, 3 (1993), 909–919.

[28] NIEMIETZ, M. Cursorjacking. http://www.
mniemietz.de/demo/cursorjacking/
cursorjacking.html, 2011.

[29] NIJHAWAN, R. Motion extrapolation in catching.
Nature; Nature (1994).

[30] PELLI, D. G., PALOMARES, M., AND MAJAJ, N. J.
Crowding is unlike ordinary masking: Distinguish-
ing feature integration from detection. Journal of
vision 4, 12 (2004).

[31] RUDERMAN, J. Bug 56236 - possible to selectively
allow chars into file upload control by disabling
control onkeydown. https://bugzilla.
mozilla.org/show_bug.cgi?id=56236,
2000.

[32] RUDERMAN, J. Bug 57770 - using styles, clip-
board to confuse text entry into file upload con-
trol. https://bugzilla.mozilla.org/
show_bug.cgi?id=57770, 2000.

[33] RUDERMAN, J. Bug 154957 - iframe
content background defaults to transparent.
https://bugzilla.mozilla.org/show_
bug.cgi?id=154957, 2002.

[34] RUDERMAN, J. Bug 162020 - pop up
xpinstall/security dialog when user is about to
click. https://bugzilla.mozilla.org/
show_bug.cgi?id=162020, 2002.

[35] RUDERMAN, J. Race conditions in security dialogs.
http://www.squarefree.com/2004/
07/01/race-conditions-in-security-
dialogs/, 2004.

[36] RYDSTEDT, G., BURSZTEIN, E., BONEH, D., AND
JACKSON, C. Busting frame busting: a study of
clickjacking vulnerabilities at popular sites. IEEE
Oakland Web 2 (2010).

[37] RYDSTEDT, G., GOURDIN, B., BURSZTEIN, E.,
AND BONEH, D. Framing attacks on smart phones
and dumb routers: tap-jacking and geo-localization
attacks. In Proceedings of the 4th USENIX confer-
ence on Offensive technologies (Berkeley, CA, USA,
2010), WOOT’10, USENIX Association, pp. 1–8.

[38] SCLAFANI, S. Clickjacking & oauth. http:
//stephensclafani.com/2009/05/04/,
2009.

[39] UHLEY, P. Clickjacking threats. http:
//www.w3.org/Security/wiki/
Clickjacking_Threats, March 2012.

[40] VELA, E. About css attacks. http:
//sirdarckcat.blogspot.com/2008/
10/about-css-attacks.html, 2008.

[41] WIKIPEDIA. Change blindness. http:
//en.wikipedia.org/wiki/Change_
blindness.

[42] WIKIPEDIA. Likejacking. http://en.
wikipedia.org/wiki/Clickjacking#
Likejacking.

[43] WISNIEWSKI, C. Facebook adds speed
bump to slow down likejackers. http:
//nakedsecurity.sophos.com/2011/
03/30/facebook-adds-speed-bump-to-
slow-down-likejackers/, March 2011.

[44] YANG, D. Clickjacking: An overlooked web
security hole. https://community.qualys.
com/blogs/securitylabs/2012/11/29,
2012.

[45] ZALEWSKI, M. Dealing with ui re-
dress vulnerabilities inherent to the current
web. http://lists.whatwg.org/
pipermail/whatwg-whatwg.org/2008-
September/016284.html, 2008.

[46] ZALEWSKI, M. minor browser ui nit-
picking. http://seclists.org/
fulldisclosure/2010/Dec/328, 2010.

[47] ZALEWSKI, M. On designing uis for non-
robots. http://lcamtuf.blogspot.com/
2010/08/on-designing-uis-for-non-
robots.html, 2010.

[48] ZALEWSKI, M. The Tangled Web: A Guide to Se-
curing Modern Web Applications. No Starch Press,
2011.

[49] ZALEWSKI, M. X-frame-options, or solving the
wrong problem. http://lcamtuf.blogspot.
com/2011/12/x-frame-options-or-
solving-wrong.html, 2011.

14

http://www.mniemietz.de/demo/cursorjacking/cursorjacking.html
http://www.mniemietz.de/demo/cursorjacking/cursorjacking.html
http://www.mniemietz.de/demo/cursorjacking/cursorjacking.html
https://bugzilla.mozilla.org/show_bug.cgi?id=56236
https://bugzilla.mozilla.org/show_bug.cgi?id=56236
https://bugzilla.mozilla.org/show_bug.cgi?id=57770
https://bugzilla.mozilla.org/show_bug.cgi?id=57770
https://bugzilla.mozilla.org/show_bug.cgi?id=154957
https://bugzilla.mozilla.org/show_bug.cgi?id=154957
https://bugzilla.mozilla.org/show_bug.cgi?id=162020
https://bugzilla.mozilla.org/show_bug.cgi?id=162020
http://www.squarefree.com/2004/07/01/race-conditions-in-security-dialogs/
http://www.squarefree.com/2004/07/01/race-conditions-in-security-dialogs/
http://www.squarefree.com/2004/07/01/race-conditions-in-security-dialogs/
http://stephensclafani.com/2009/05/04/
http://stephensclafani.com/2009/05/04/
http://www.w3.org/Security/wiki/Clickjacking_Threats
http://www.w3.org/Security/wiki/Clickjacking_Threats
http://www.w3.org/Security/wiki/Clickjacking_Threats
http://sirdarckcat.blogspot.com/2008/10/about-css-attacks.html
http://sirdarckcat.blogspot.com/2008/10/about-css-attacks.html
http://sirdarckcat.blogspot.com/2008/10/about-css-attacks.html
http://en.wikipedia.org/wiki/Change_blindness
http://en.wikipedia.org/wiki/Change_blindness
http://en.wikipedia.org/wiki/Change_blindness
http://en.wikipedia.org/wiki/Clickjacking#Likejacking
http://en.wikipedia.org/wiki/Clickjacking#Likejacking
http://en.wikipedia.org/wiki/Clickjacking#Likejacking
http://nakedsecurity.sophos.com/2011/03/30/facebook-adds-speed-bump-to-slow-down-likejackers/
http://nakedsecurity.sophos.com/2011/03/30/facebook-adds-speed-bump-to-slow-down-likejackers/
http://nakedsecurity.sophos.com/2011/03/30/facebook-adds-speed-bump-to-slow-down-likejackers/
http://nakedsecurity.sophos.com/2011/03/30/facebook-adds-speed-bump-to-slow-down-likejackers/
https://community.qualys.com/blogs/securitylabs/2012/11/29
https://community.qualys.com/blogs/securitylabs/2012/11/29
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2008-September/016284.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2008-September/016284.html
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2008-September/016284.html
http://seclists.org/fulldisclosure/2010/Dec/328
http://seclists.org/fulldisclosure/2010/Dec/328
http://lcamtuf.blogspot.com/2010/08/on-designing-uis-for-non-robots.html
http://lcamtuf.blogspot.com/2010/08/on-designing-uis-for-non-robots.html
http://lcamtuf.blogspot.com/2010/08/on-designing-uis-for-non-robots.html
http://lcamtuf.blogspot.com/2011/12/x-frame-options-or-solving-wrong.html
http://lcamtuf.blogspot.com/2011/12/x-frame-options-or-solving-wrong.html
http://lcamtuf.blogspot.com/2011/12/x-frame-options-or-solving-wrong.html

	Introduction
	Background and Related Work
	The UI Safety Specification

	Perception and UI Safety
	Attention
	Visual Perception and Illusions
	Taking Action: The Motor System

	Perceptual UI Attacks
	Destabilizing Pointer Perception
	Attack Setup
	Understanding the Attack

	Attacking Peripheral Vision
	Game Setup
	Understanding the Attack

	Motor Adaptation
	Game Setup
	Understanding the Attack
	Attack

	Fast Motion Mislocalization
	Game Setup
	Understanding the Attack
	Attack

	Visual Cues and Click Timing
	Game Setup
	Understanding the Attack

	Evaluation
	Discussion and Future Work
	Architectural Defenses
	UI Security of Touch Interfaces
	Future Defenses
	Future Attacks
	Improving our Attacks
	Novel Attacks

	Conclusion

