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Abstract. We consider distributed private data analysis, where n parties each
holding some sensitive data wish to compute some aggregate statistics over all
parties’ data. We prove a tight lower bound for the private distributed summa-
tion problem. Our lower bound is strictly stronger than the prior lower-bound
result by Beimel, Nissim, and Omri published in CRYPTO 2008. In particular,
we show that any n-party protocol computing the sum with sparse communica-
tion graph must incur an additive error of Ω(

√
n) with constant probability, in

order to defend against potential coalitions of compromised users. Furthermore,
we show that in the client-server communication model, where all users commu-
nicate solely with an untrusted server, the additive error must be Ω(

√
n), regard-

less of the number of messages or rounds. Both of our lower-bounds, for the gen-
eral setting and the client-to-server communication model, are strictly stronger
than those of Beimel, Nissim and Omri, since we remove the assumption on the
number of rounds (and also the number of messages in the client-to-server com-
munication model). Our lower bounds generalize to the (ε, δ) differential privacy
notion, for reasonably small values of δ.

1 Introduction

Dwork et al. [DMNS06] proposed (information theoretical) differential privacy, which
has become a de-facto standard privacy notion in private data analysis. In this paper, we
investigate the setting of distributed private data analysis [BNO08], in which n parties
each holds some private input, and they wish to jointly compute some statistic over all
parties’ inputs in a way that respects each party’s privacy.

In a seminal work by Beimel, Nissim, and Omri [BNO08], they demonstrate a lower
bound result for distributed private data analysis. Specifically, they consider the dis-
tributed summation problem, namely, computing the sum of all parties’ inputs. They
prove that any differentially-private multi-party protocol with a small number of rounds
and small number of messages must have large error.

This paper proves a strictly stronger lower bound than the result by Beimel, Nissim,
and Omri [BNO08]. We show that for the distributed summation problem, any dif-
ferentially private multi-party protocol with a sparse communication graph must have
large error, where two nodes are allowed to communicate only if they are adjacent in
the communication graph. In comparison with the previous lower bound by Beimel et
al. [BNO08], our lower bound relaxes the constraint on the small number of messages
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or rounds. In this sense, our lower bound is strictly stronger than that of Beimel et
al. [BNO08].

We also consider a special setting in which only client-server communication is
allowed (i.e., the communication graph is the star graph with the server at the cen-
ter). Beimel et al. [BNO08] referred to this communication model as local model. In
the client-server communication setting, we prove a lower bound showing that any
differentially-private protocol computing the sum must have large error. This lower
bound has no restriction on the number of messages or the number of rounds, and is
also strictly stronger than [BNO08], who showed that in the client-server setting, any
differentially-private protocol with a small number of rounds must have large error.

Furthermore, our lower-bound results hold for (ε, δ)-differential privacy where δ
is reasonably small. Since ε-differential privacy is a special case of this with δ = 0,
our lower bounds are also more general than those of Beimel et al. who considered ε
differential privacy.

The lower bounds proven in this paper hold for information theoretic differential
privacy. By contrast, previous works have demonstrated the possibility of constructing
multi-party protocols with O(1) error and small message complexity in the computa-
tional differential privacy setting [DKM+06, RN10, SCR+11]. Therefore, our lower-
bound results also imply a gap between computational and information theoretic differ-
ential privacy in the multi-party setting.

1.1 Informal Summary of Main Results

Lower Bound for the General Setting (Corollary 2). Informally, we show that any
n-party protocol computing the sum, which consumes at most 1

4n(t+1) messages must
incur Ω(

√
n) additive error (with constant probability), in order to preserve differen-

tially privacy against coalitions of up to t compromised users.
Lower Bound for Client-Server Model (Corollary 1). Informally, we show that in
the client-server model, an aggregator would make an additive errorΩ(

√
n) on the sum

from any n-user protocol that preserves differential privacy. This lower-bound holds
regardless of the number of messages or number of rounds.
Tightness of the Lower Bounds. Both of the above lower bounds are tight in the fol-
lowing sense. First, for the client-server model, there exists a naive protocol, in which
each user perturbs their inputs using Laplace or geometric noise with standard deviation
O( 1ε ), and reveals their perturbed inputs to the aggregator. Such a naive protocol has
additive error O(

√
n); so in some sense, the naive protocol is the best one can do in the

client-server model.
To see why the lower bound is tight for the general multi-party setting, we com-

bine standard techniques of secure function evaluation [CK93] and distributed random-
ness [SCR+11] and show in Section 5 that there exists a protocol which requires only
O(nt) messages, but achieves o(

√
n) error.

Techniques. To prove the above-mentioned lower-bounds, we combine techniques from
communication complexity and measure anti-concentration techniques used in the met-
ric embedding literature. Our communication complexity techniques are inspired by
the techniques adopted by McGregor et al. [MMP+10] who proved a gap between
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information-theoretic and computational differential privacy in the 2-party setting. The
key observation is that independent inputs remain independent even after condition-
ing on the transcript of the protocol. This eliminates the dependence on the number of
rounds of communication in the lower bound.

As argued by in [BNO08], if a party communicates with only a small number of
other parties, then there must still be sufficient randomness in that party’s input. Then,
using anti-concentration techniques, we show that the sum of these independent ran-
dom variables is either much smaller or much larger than the mean, both with constant
probability, thereby giving a lower bound on the additive error. The anti-concentration
techniques are inspired by the analysis of the square of the sum of independent sub-
Gaussian random variables [IN07], which generalizes several Johnson-Lindenstrauss
embedding constructions [DG03, Ach03]. Moreover, we generalize the techniques to
prove the lower bound for (ε, δ)-differentially private protocols (as opposed to just ε-
differential privacy). The challenge is that for δ > 0, it is possible for some transcript
to break a party’s privacy and there might not be enough randomness left in its input.
However, we show that for small enough δ, the probability that such a transcript is
encountered is small, and hence the argument is still valid.

2 Related Work

Differential privacy [DMNS06, Dwo06, Dwo10] was traditionally studied in a setting
where a trusted curator, with access to the entire database in the clear, wishes to release
statistics in a way that preserves each individual’s privacy. The trusted curator is re-
sponsible for introducing appropriate perturbations prior to releasing any statistic. This
setting is particularly useful when a company or a government agency, in the possession
of a dataset, would like to share it with the public.

In many real-world applications, however, the data is distributed among users, and
users may not wish to entrust their sensitive data to a centralized party such as a cloud
service provider. In these cases, we can employ distributed private data analysis – a
problem proposed and studied in several recent works [MMP+10, BNO08, DKM+06,
RN10, SCR+11] – where participating parties are mutually distrustful, but wish to learn
some statistics over their joint datasets. In particular, the client-server communication
model [BNO08, RN10, SCR+11] where all users communicate solely with an untrusted
server, is especially desirable in real-world settings.

This work subsumes the distributed private data analysis setting previously studied
by Beimel, Nissim, and Omri [BNO08], and improves their lower-bounds for information-
theoretic differentially private multi-party protocols.

While this work focuses on lower bounds for information theoretic differential
privacy, computational differential privacy is an alternative notion first formalized by
Mironov et al. [MPRV09], aiming to protect individual user’s sensitive data against
polynomially-bounded adversaries. Previous works have shown the possibility of con-
structing protocols with O(1) error and small message complexity in the computational
differential privacy setting [DKM+06, RN10, SCR+11]. This demonstrates a gap be-
tween information theoretic and computational differential privacy in the multi-party
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setting. In particular, the constructions by Rastogi et al. [RN10] and Shi et al. [SCR+11]
require only client-server communication, and no peer-to-peer interactions.

3 Problem Definition and Assumptions

Consider a group of n parties (or nodes), indexed by the set [n] := {1, 2, . . . n}. Each
party i ∈ [n] has private data xi ∈ U , where U := {0, 1, 2, . . . ,∆} for some positive
integer ∆. We use the notation x := (x1, x2, . . . , xn) ∈ Un to denote the vector of all
parties’ data, also referred to as an input configuration. The n parties participate in a
protocol such that at the end at least one party learns or obtains an estimate of the sum,
denoted sum(x) :=

∑
i∈[n] xi. For a subset S ⊆ [n], we denote sum(xS) :=

∑
i∈S xi.

Given a protocol Π and an input x ∈ Un, we use Π(x) to denote the execution of
the protocol on the input. A coalition is a subset T of nodes that share their information
with one another in the hope of learning the other parties’ input. The view Π(x)|T of
the coalition T consists of the messages, any input and private randomness viewable by
the nodes in T . In contrast, we denote by π(x) the transcript of the messages and use
π(x)|T to mean the messages sent or received by nodes in T .
Trust and Attack Model. As in Beimel et al. [BNO08], we assume that all parties
are semi-honest. A subset T of parties can form a coalition and share their input data,
private randomness and view of the transcript with one another in order to learn the
input data of other parties. Since we adopt the semi-honest model, all parties, whether
within or outside the coalition, honestly use their true inputs and follow the protocol.
The data pollution attack, where parties inflate or deflate their input values, is out of
the scope of this paper. Defense against the data pollution attack can be considered as
orthogonal and complementary to our work, and has been addressed by several works
in the literature [PSP03].
Communication Model. Randomized oblivious protocols are considered in [CK93,
BNO08], where the communication pattern (i.e., which node sends message to which
node in which round) is independent of the input and the randomness. We relax this
notion by assuming that for a protocol Π , there is a communication graph GΠ (in-
dependent of input and randomness) on the nodes such that only adjacent nodes can
communicate with each other. For a node i, we denote by NΠ(i) its set of neighbors
in GΠ . The subscript Π is dropped when there is no risk of ambiguity. Observe that
the number of messages sent in each round is only limited by the number of edges in
the communication graph, and to simply our proofs, we only assume that there is some
finite upper bound on the number of rounds for all possible inputs and randomness used
by the protocol.

3.1 Preliminaries

Intuitively, differential privacy against a coalition guarantees that if an individual out-
side the coalition changes its data, the view of the coalition in the protocol will not be
affected too much. In other words, if two input configurations x and y differ only in 1
position outside the coalition, then the distribution of Π(x)|T is very close to that of
Π(y)|T . This intuition is formally stated in the following definition.
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Definition 1 (Information-Theoretic Differential Privacy Against Coalition). Let
ε > 0 and 0 ≤ δ < 1. A (randomized) protocol Π preserves (ε, δ)-differential pri-
vacy against coalition T if for all vectors x and y in Un that differ by only 1 po-
sition corresponding to a party outside T , for all subsets S of possible views by T ,
Pr[Π(x)|T ∈ S] ≤ exp(ε) · Pr[Π(y)|T ∈ S] + δ.

A protocol Π preserves ε-differential privacy against a coalition if it preserves
(ε, 0)-differential privacy against the same coalition.

Two noise distributions are commonly used to perturb the data and ensure differen-
tial privacy, the Laplace distribution [DMNS06], and the Geometric distribution [GRS09].
The advantage of using the geometric distribution over the Laplace distribution is that
we can keep working in the domain of integers.

Definition 2 (Geometric Distribution). Let α > 1. We denote by Geom(α) the sym-
metric geometric distribution that takes integer values such that the probability mass
function at k is α−1

α+1 · α
−|k|.

Fact 1 Let ε > 0. Suppose u and v are two integers such that |u − v| ≤ ∆. Let
r be a random variable having distribution Geom(exp( ε∆ )). Then, for any integer k,
Pr[u+ r = k] ≤ exp(ε) · Pr[v + r = k].

The above property of Geom distribution is useful for designing differentially pri-
vate mechanisms that output integer values. In our setting, changing one party’s data
can only affect the sum by at most ∆. Hence, it suffices to consider Geom(α) with
α = e

ε
∆ . Observe that Geom(α) has variance 2α

(α−1)2 . Since
√
α

α−1 ≤
1

lnα = ∆
ε , the

magnitude of the error added is O(∆ε ).

Naive Scheme. As a warm-up exercise, we describe a Naive Scheme, where each party
generates an independent Geom(e

ε
∆ ) noise, adds the noise to its data, and sends the

perturbed data to one special party called an aggregator, who then computes the sum
of all the noisy data. As each party adds one copy of independent noise to its data, n
copies of noises would accumulate in the sum. Using Lemma 8, the accumulated noise
is O(∆

√
n

ε ) with high probability. In comparison with our lower-bound, this shows that
under certain mild assumptions, if one wishes to guarantee small message complex-
ity, the Naive Scheme is more or less the best one can do in the information theoretic
differential privacy setting.

4 Lower Bound for Information-Theoretic Differential Privacy

This section proves lower-bounds for differentially private distributed summation pro-
tocols. We consider two settings, the general settings, where all nodes are allowed to
interact with each other; and the client-server communication model, where all users
communicate only with an untrusted server, but not among themselves.

We will prove the following main result, and then show how to extend the main
theorem to the afore-mentioned two communication models.
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Theorem 1 (Information-Theoretic Lower Bound for Size-t Coalitions). Let 0 <
ε ≤ ln 99 and 0 ≤ δ ≤ 1

4n . There exists some η > 0 (depending on ε) such that the
following holds. Suppose n parties, where party i (i ∈ [n]) has a secret bit xi ∈ {0, 1},
participate in a protocol Π to estimate

∑
i∈[n] xi. Suppose further that the protocol

is (ε, δ)-differentially private against any coalition of size t, and there exists a subset
of m parties, each of whom has at most t neighbors in the protocol’s communication
graph. Then, there exists some configuration of the parties’ bits xi’s such that with
probability at least η (over the randomness of the protocol), the additive error is at
least Ω(

√
γ

1+γ ·
√
m), where γ = 2eε.

Note that the assumption that 0 ≤ δ ≤ 1
4n is not a limitation. Typically, when we

adopt (ε, δ) differential privacy, we wish to have δ = o( 1n ), to ensure that no individual
user’s sensitive data is leaked with significant probability.

The following corollaries are special cases of Theorem 1, corresponding to the
client-server communication model, and the general model respectively. In both set-
tings, our results improve upon the lower bounds by Beimel et al. [BNO08]. We will
first show how to derive these corollaries from Theorem 1. We then present a formal
proof for Theorem 1.

Corollary 1 (Lower Bound for Client-Server Communication Model). Let 0 < ε ≤
ln 99 and 0 ≤ δ ≤ 1

4n . Suppose n parties, each having a secret bit, participate in a pro-
tocol Π with a designated party known as the aggregator, with no peer-to-peer commu-
nication among the n parties. Suppose further that the protocol is (ε, δ)-differentially
private against any single party (which forms a coalition on its own). Then, with con-
stant probability (depending on ε), the aggregator estimates the sum of the parties’ bits
with additive error at least at least Ω(

√
γ

1+γ ·
√
n), where γ = 2eε.

Proof. The communication graph is a star with the aggregator at the center. The proto-
col is also differentially private against any coalition of size 1, and there are n parties,
each of which has only 1 neighbor (the aggregator). Therefore, the result follows from
Theorem 1. ut

Corollary 2 (Lower Bound for General Setting). Let 0 < ε ≤ ln 99 and 0 ≤ δ ≤ 1
4n .

Suppose n parties participate in a protocol that is (ε, δ)-differentially private against
any coalition of size t. If there are at most 1

4n(t+1) edges in the communication graph
of the protocol, then with constant probability (depending on ε), the protocol estimates
the sum of the parties’ bits with additive error at least Ω(

√
γ

1+γ ·
√
n), where γ = 2eε.

Proof. Since there are at most 1
4n(t + 1) edges in the communication graph, there are

at least n2 nodes with at most t neighbors (otherwise the sum of degrees over all nodes
is larger than 1

2n(t+ 1)). Hence, the result follows from Theorem 1. ut

Proof Overview for Theorem 1. We fix some ε > 0 and 0 ≤ δ ≤ 1
4n , and consider

some protocol Π that preserves (ε, δ)-differential privacy against any coalition of size
t.

Suppose that the bitsXi’s from all parties are all uniform in {0, 1} and independent.
Suppose M is the subset of m parties, each of whom has at most t neighbors in the
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communication graph. For each i ∈ M , we consider a set P(i) of bad transcripts for i,
which intuitively is the set of transcripts π under which the view of party i’s neighbors
can compromise party i’s privacy.

We consider the set P := ∪i∈MP(i) of bad transcripts (which we define formally
later), and show that the probability that a bad transcript is produced is at most 3

4 .
Conditioning on a transcript π /∈ P , for i ∈ M , each Xi still has enough randomness,
as transcript π does not break the privacy of party i. Therefore, the conditional sum∑
i∈M Xi still has enough variance like the sum of m = |M | independent uniform

{0, 1}-random variables. Using anti-concentration techniques, we can show that the
sum deviates above or below the mean by Ω(

√
m), each with constant probability.

Since the transcript determines the estimation of the final answer, we conclude that the
error is Ω(

√
m) with constant probability.

Notation. Suppose that each party i’s bit Xi is uniform in {0, 1} and independent.
We use X := (Xi : i ∈ [n]) to denote the collection of the random variables. We use a
probabilistic argument to show that the protocol must, for some configuration of parties’
bits, make an additive error of at least Ω(

√
m) on the sum with constant probability.

For convenience, given a transcript π (or a view of the transcript by certain parties)
we use Pr[π] to mean Pr[π(X) = π] and Pr[·|π] to mean Pr[·|π(X) = π]; given a
collection P of transcripts (or collection of views), we use Pr[P] to mean Pr[π(X) ∈
P].

We can assume that the estimate made by the protocol is a deterministic function
on the whole transcript of messages, because without loss of generality we can assume
that the last message sent in the protocol is the estimate of the sum.

We will define some event E where the protocol makes a large additive error.
Bad Transcripts. Denote γ := 2eε. For i ∈ M , define P(i)

0 := {π : Pr[π|N(i)|Xi =

0] > γ ·Pr[π|N(i)|Xi = 1]} and P(i)
1 := {π : Pr[π|N(i)|Xi = 1] > γ ·Pr[π|N(i)|Xi =

0]}. We denote by P(i) := P(i)
0 ∪P

(i)
1 the set of bad transcripts with respect to party i.

Let P := ∪i∈MP(i).

Fact 2 (Projection of Events) Suppose U is a subset of the views of the transcript by
the neighbors of i, and define the subset of transcripts by PU := {π : π|N(i) ∈ U}.
Then, it follows that PrX,Π [π(X) ∈ PU ] = PrX,Π [π(X)|N(i) ∈ U ].

Lemma 1 (Most Transcripts Behave Well). Let ε > 0 and 0 ≤ δ ≤ 1
4n . Suppose

the protocol is (ε, δ)-differentially private against any coalition of size t, and P is the
union of the bad transcripts with respect to parties with at most t neighbors in the
communication graph. Then, PrX,Π [P] ≤ 3

4 .

Proof. From definition of P(i)
0 and using Fact 2, we have Pr[P(i)

0 |Xi = 0] > γ ·
Pr[P(i)

0 |Xi = 1]. Since the protocol is (ε, δ)-differentially private against any coalition
of size t, we have for each i ∈M , Pr[P(i)

0 |Xi = 0] ≤ eε Pr[P(i)
0 |Xi = 1] + δ. Hence,

we have (γ − eε) Pr[P(i)
0 |Xi = 1] ≤ δ, which implies that Pr[P(i)

0 |Xi = 1] ≤ e−εδ,
since γ = 2eε.

Hence, we also have Pr[P(i)
0 |Xi = 0] ≤ eε Pr[P(i)

0 |Xi = 1] + δ ≤ 2δ. Therefore,
we have Pr[P(i)

0 ] = 1
2 (Pr[P

(i)
0 |Xi = 0] + Pr[P(i)

0 |Xi = 1]) ≤ 3δ
2 .
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Similarly, we have Pr[P(i)
1 ] ≤ 3δ

2 . Hence, by the union bound over i ∈M , we have
Pr[P] ≤ 3nδ ≤ 3

4 , since we assume 0 ≤ δ ≤ 1
4n . ut

We perform the analysis by first conditioning on some transcript π /∈ P . The goal is
to show that PrX[E|π] ≥ η, for some η > 0. Then, since Pr[P] ≤ 3

4 , we can conclude
PrX[E ] ≥ η

4 , and hence for some configuration x, we have Pr[E|x] ≥ η
4 , as required.

Conditioning on transcript π. The first step (Lemma 2) is analogous to the techniques
of [MMP+10, Lemma 1]. We show that conditioning on the transcript π /∈ P , the ran-
dom variables Xi’s are still independent and still have enough randomness remaining.

Definition 3 (γ-random). Let γ ≥ 1. A random variable X in {0, 1} is γ-random if
1
γ ≤

Pr[X=1]
Pr[X=0] ≤ γ.

Lemma 2 (Conditional Independence and Randomness). Suppose each party’s bit
Xi is uniform and independent, and consider a protocol to estimate the sum that is
(ε, δ)-differentially private against any coalition of size t, where 0 ≤ δ ≤ 1

4n . Then,
conditioning on the transcript π /∈ P , the random variables Xi’s are independent;
moreover, for each party i ∈ M that has at most t neighbors in the communication
graph, the conditional random variable Xi is γ-random, where γ = 2eε.

Proof. The proof is similar to that of [MMP+10, Lemma 1]. Since our lower bound
does not depend on the number of rounds, we can without loss of generality sequential-
ize the protocol and assume only one node sends a message in each round. The condi-
tional independence of the Xi’s can be proved by induction on the number of rounds
of messages. To see this, consider the first message m1 sent by the party who has input
X1, and supposeX ′ is the joint input of all other parties. Observe that (X1,m1) is inde-
pendent of X ′. Hence, we have Pr[X1 = a,X ′ = b|m1 = c] = Pr[X1=a,X

′=b,m1=c]
Pr[m1=c]

=
Pr[X1=a,m1=c] Pr[X′=b]

Pr[m1=c]
= Pr[X1 = a|m1 = c] ·Pr[X ′ = b|m1 = c], which means

conditioning on m1, the random variables X1 and X ′ are independent. After condi-
tioning on m1, one can view the remaining protocol as one that has one less round
of messages. Therefore, by induction, one can argue that conditioning on the whole
transcript, the inputs of the parties are independent.

For each party i having at most t neighbors, the γ-randomness of each conditional
Xi can be proved by using the uniformity of Xi and that π /∈ P(i) is not bad for i.

We first observe that the random variable Xi has the same conditional distribution
whether we condition on π or π|N(i), because as long as we condition on the messages
involving node i, everything else is independent of Xi.

We next observe that if party i ∈ M has at most t neighbors in the communication
graph and π /∈ P(i), then by definition we have Pr[π|N(i) |Xi=1]

Pr[π|N(i) |Xi=0] ∈ [γ−1, γ].

Hence, Pr[Xi=1|π]
Pr[Xi=0|π] =

Pr[Xi=1|π|N(i)]

Pr[Xi=0|π|N(i)]
=

Pr[π|N(i) |Xi=1]·Pr[Xi=1]

Pr[π|N(i) |Xi=0]·Pr[Xi=0] =
Pr[π|N(i) |Xi=1]

Pr[π|N(i) |Xi=0]

∈ [γ−1, γ]. ut

We use the superscripted notation X ′ to denote the version of the random variable
X conditioning on some transcript π. Hence, Lemma 2 states that the random variables

8



X ′i’s are independent, and each X ′i is γ-random for i ∈ M . It follows that the sum∑
i∈M X ′i has variance at least mγ

(1+γ)2 .
The idea is that conditioning on the transcript π, the sum of the parties’ bits (in M )

has high variance, and so the protocol is going to make a large error with constant prob-
ability. We describe the precise properties we need in the following technical lemma,
whose proof appears in Section 4.1, from which Theorem 1 follows.

Lemma 3 (Large Variance Dichotomy). Let γ ≥ 1. There exists η > 0 (depending on
γ) such that the following holds. Suppose Zi’s are m independent random variables in
{0, 1} and are all γ-random, where i ∈ [n]. DefineZ :=

∑
i∈[m] Zi and σ2 := mγ

2(1+γ)2 .
Then, there exists an interval [a, b] of length σ

2 such that the probabilities Pr[Z ≥ b]
and Pr[Z ≤ a] are both at least η.

Proof of Theorem 1: Using Lemma 3, we set γ := exp(ε) and Zi := X ′i , for each
i ∈ M . Suppose η > 0 (depending on γ and hence on ε), σ2 := mγ

2(1+γ)2 and the
interval [a, b] are as guaranteed from the lemma. Suppose s is the sum of the bits of
parties outside M . Let c := a+b

2 + s.
Suppose the protocol makes an estimate that is at most c. Then, conditioning on π,

the system still has enough randomness among parties in M , and with probability at
least η, the real sum is at least b + s, which means the additive error is at least σ4 . The
case when the protocol makes an estimate greater than c is symmetric. Therefore, con-
ditioning on π /∈ P , the protocol makes an additive error of at least σ4 with probability
at least η in any case. Note that this is true even if the protocol is randomized.

Let E be the event that the protocol makes an additive error of at least σ4 . We have
just proved that for π /∈ P , PrX,Π [E|π] ≥ η, where the probability is over the X =
(Xi : i ∈ [n]) and the randomness of the protocol Π .

Observe that PrX,Π [E|π] ≥ η for all transcripts π /∈ P , and from Lemma 1,
Pr[P] ≤ 3

4 . Hence, we conclude that PrX,Π [E ] ≥ η
4 . It follows that there must ex-

ist some configuration x of the parties’ bits such that PrΠ [E|x] ≥ η
4 . This completes

the proof of Theorem 1. ut

4.1 Large Variance Dichotomy

We prove Lemma 3. For i ∈ M , let pi := Pr[Zi = 1]. From the γ-randomness of Zi,
it follows that 1

1+γ ≤ pi ≤ γ
1+γ . Without loss of generality, we assume that there are

at least m2 indices for which pi ≥ 1
2 ; otherwise, we consider 1 − Zi. Let J ⊆ M be a

subset of size m
2 such that for each i ∈ J , pi ≥ 1

2 .
Define for i ∈ J , Yi := Zi − pi. Let Y :=

∑
i∈J Yi, and Z ′ :=

∑
i∈J Zi. It

follows that E[Yi] = 0 and E[Y 2
i ] = pi(1 − pi) ≥ γ

(1+γ)2 . Denote σ2 := mγ
2(1+γ)2 ,

µ := E[Z ′] =
∑
i∈J pi and ν2 := E[Y 2] =

∑
i∈J pi(1− pi). We have ν2 ≥ σ2.

The required result can be achieved from the following lemma.
Lemma 4 (Large Deviation). There exists η0 > 0 (depending only on γ) such that
Pr[|Y | ≥ 9σ

10 ] ≥ η0.

We show how Lemma 4 implies the conclusion of Lemma 3. Since Pr[|Y | ≥ 9σ
10 ] =

Pr[Z ′ ≥ E[Z ′] + 9σ
10 ] + Pr[Z ′ ≤ E[Z ′]− 9σ

10 ], at least one of the latter two terms is at
least η02 . We consider the case Pr[Z ′ ≥ E[Z ′]+ 9σ

10 ] ≥
η0
2 ; the other case is symmetric.

9



By Hoeffding’s Inequality, for all u > 0, Pr[Z ′ ≥ E[Z ′]+u] ≤ exp(− 2u2

n ). Setting
u := 2σ

5 , we have Pr[Z ′ < E[Z ′] + 2σ
5 ] ≥ 1− exp(− 8γ

25(1+γ)2 ) =: η1.

We set η := 1
2 min{η02 , η1}. Let Ẑ :=

∑
i∈M\J Zi. Observe that Ẑ and Z are

independent. Hence we can take the required interval to be [median(Ẑ) + E[Z] +
2σ
5 ,median(Ẑ) + E[Z] + 9σ

10 ], which has width σ
2 .

Hence, it remains to prove Lemma 4.
Proof of Lemma 4: We use the method of sub-Gaussian moment generating function in
the way described in [IN07, Remark 3.1].

First, for each i ∈M , for any real h,

E[ehYi ] = pi · eh(1−pi) + (1− pi) · eh(0−pi)

= exp(−pih) · (1 + pi(e
h − 1)) ≤ exp(pih

2),

where the last inequality follows from 1 + p(eh − 1) ≤ exp(ph2 + ph), for all real h
and 1

2 ≤ p ≤ 1.
Let g be a standard Gaussian random variable, i.e., it has density function x 7→

1√
2π
e

1
2x

2

. It is assumed that g is independent of all other randomness in the proof.

Recall that E[ehg] = e
1
2h

2

and for h < 1
2 , E[ehg

2

] = 1√
1−2h .

For 0 ≤ h ≤ 1
8µ , we have

E[ehY
2

] = EY [Eg[e
√
2hgY ]] = Eg[EY [e

√
2hg

∑
i Yi ]]

= Eg[
∏
i

EYi [e
√
2hgYi ]] ≤ Eg[

∏
i

e2hpig
2

]

= Eg[exp(2µhg
2)] =

1√
1− 4µh

≤
√
2.

For − 1
8µ ≤ h ≤

1
8µ , we have

E[ehY
2

] ≤ 1 + hE[Y 2] +
∑
m≥2

1

m!
(8µ|h|)m(

1

8µ
)mE[Y 2m]

≤ 1 + hν2 + (8µh)2
∑
m≥2

1

m!
(
1

8µ
)mE[Y 2m]

≤ 1 + hν2 + (8µh)2E[exp(
Y 2

8µ
)]

≤ 1 + hν2 + 100µ2h2 ≤ exp(hν2 + 100µ2h2)

Let 0 < β < 1. For − 1
8µ ≤ h < 0, we have

Pr[Y 2 ≤ (1− β)ν2] = Pr[hY 2 ≥ h(1− β)ν2]
≤ exp(−h(1− β)ν2) · E[exp(hY 2)]

≤ exp(hβν2 + 100µ2h2).

Observe that 1
1+γ ≤

ν2

µ =
∑
i pi(1−pi)∑

i pi
≤ γ

1+γ .
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We can set h := − βν2

200µ2 ≥ − 1
8µ , and we have Pr[Y 2 ≤ (1−β)ν2] ≤ exp(− β2ν4

400µ2 ) ≤
exp(− β2

400(1+γ)2 ).
Setting β := 19

100 and observing that ν2 ≥ σ2, we have Pr[|Y | ≥ 9
10σ] ≥ 1 −

exp(−( 19
2000(1+γ) )

2). ut

5 Differentially Private Protocols Against Coalitions

We show that the lower bound proved in Section 4 is essentially tight. As noted by
Beimel et al. [BNO08], one can generally obtain differentially private multi-party pro-
tocols with small error, by combining general (information theoretic) Secure Function
Evaluation (SFE) techniques with differential privacy. Although our upper-bound con-
structions use standard techniques from SFE and differential privacy, we include the
result here for completeness. We outline the main steps to obtain the result and give the
details in the Appendix.

Theorem 2 (Differentially Private Protocols Against Coalitions). Given ε > 0, 0 <
δ < 1 and a positive integer t, there exist an oblivious protocol among n parties each
having a secret input xi ∈ U := {0, 1, 2, . . . ,∆}, such that the protocol uses only
O(nt) messages to estimate the sum

∑
i∈[n] xi; the differential privacy guarantees and

error bounds of the protocols are given as follows.
(a) For ε-differential privacy against any coalition of size t, with probability at least

1− η, the additive error is at most O(∆ε · exp(
ε

2∆ )
√
t+ 1 log 1

η ).
(b) For (ε, δ)-differential privacy against any coalition of size t, with probability at

least 1− η, the additive error is at most O(∆ε · exp(
ε

2∆ )
√

n
n−t log

1
δ log

1
η ).

Similar to [SCR+11], our approach consists of two steps. We start with a protocol
(such as the one in [CK93]) that is secure with respect to sum against any coalition of
size t, i.e., the coalition learns nothing more than what can be inferred from the sum.
However, revealing the accurate sum breaks differential privacy; hence in the second
step, each party adds random noise to its input, where the precise distribution of noise
for each party depends on whether we wish to achieve ε- or (ε, δ)-differential privacy.

Definition 4 (Secure Function Evaluation Against Coalition). A protocol Π0 is se-
cure with respect to the function f : Un → D against a coalition T ⊂ [n] if for all
vectors x,y ∈ Un such that x and y agree on all coordinates in T and f(x) = f(y),
for all subsets S of views of T , Pr[Π0(x)|T ∈ S] = Pr[Π0(y)|T ∈ S].

Proposition 1 (Existence of Secure Protocol [CK93], Appendix A.2). There exists a
protocol that is secure against any coalition of size t with respect to the function sum.

Input Perturbation Given a secure protocol Π0, differential privacy can be achieved
by input perturbation. Formally, each party i generates independent randomness ri from
some sample space Ω and apply a random function χ : U × Ω → U to produce the
perturbed input x̂i := χ(xi, ri). We denote r := (r1, r2, . . . , rn) ∈ Ωn and x̂ :=
(x̂1, . . . , x̂n) = χ(x, r). The resulting protocol Π on input x is simply the protocol Π0

applied to the perturbed input x̂.
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Definition 5 ((ε, δ)-DD-Privacy Against Coalition). Suppose ε > 0, 0 ≤ δ < 1.
We say that the input perturbation procedure, given by the joint distribution r :=
(r1, . . . , rn) and the randomization function χ achieves (ε, δ)-distributed differential
privacy (DD-privacy) with respect to the function f : Un → D against coalition
T ⊆ [n], if for any vectors x,y ∈ Un that differ by one coordinate outside T , for
any subset Q ⊆ D, Pr[f(x̂) ∈ Q|rT ] ≤ exp(ε) · Pr[f(ŷ) ∈ Q|rT ] + δ.

We show in Appendix A.3 that there exist input perturbation procedures that sat-
isfy DD-privacy, which can be combined with Proposition 1 and the following lemma
(proved in Appendix A.1) to obtain Theorem 2.

Lemma 5 (Security and DD-Privacy Give Differential Privacy). Consider a coali-
tion T ⊆ [n] and a function f : Un → D. Suppose the protocol Π0 is secure with
respect to the function f against coalition T . Moroever, suppose further that for ε > 0
and 0 ≤ δ < 1, the input perturbation procedure x̂ := χ(x, r) is (ε, δ)-DD pri-
vate with respect to f against coalition T . Then, the resulting protocol Π defined by
Π(x) := Π0(x̂) is (ε, δ)-differentially private against coalition T .
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A Technical Details for Differentially Private Protocols (Upper
Bound)

A.1 Proof of Lemma 5

Proof of Lemma 5: For simplicity, we assume that the range D of the function f is
countable. Consider a subset S of the views of the coalition T in the protocol Π , and
let x,y ∈ Un be vectors that differ by one coordinate outside T . Then, we have

Pr[Π(x)|T ∈ S] = ErT [Pr[Π(x)|T ∈ S |rT ]] = ErT [Pr[Π0(x̂)|T ∈ S |rT ]] (1)
≤ ErT [e

ε Pr[Π0(ŷ)|T ∈ S |rT ] + δ] (2)
= eε Pr[Π(y)|T ∈ S] + δ, (3)

where inequality (2) holds because of the fact: Pr[Π0(x̂)|T ∈ S |rT ]] ≤ eε Pr[Π0(ŷ)|T ∈
S |rT ] + δ, which we prove in the following.

Consider the family of functions G := {g : D → {0, 1}}. Observe that each g ∈ G
corresponds to Sg := {u ∈ D : g(u) = 1}.

Hence, it follows that Pr[f(x̂) ∈ Sg |rT ] = Ef(x̂)[g(f(x̂)) |rT ]. Hence, (ε, δ)-DD-
privacy implies that for all g ∈ G, E[g(f(x̂)) |rT ] ≤ eεE[g(f(ŷ)) |rT ] + δ.

We next observe that Pr[Π0(x̂)|T ∈ S |rT ] =
∑
j∈D Pr[f(x̂) = j |rT ]·Pr[Π0(x̂)|T ∈

S |f(x̂) = j, rT ], where conditioning on rT , the term Pr[Π0(x̂)|T ∈ S |f(x̂) = j, rT ]
is a function of j.

By the security ofΠ0, we have Pr[Π0(x̂)|T ∈ S |f(x̂) = j, rT = σ] = Pr[Π0(ŷ)|T ∈
S |f(ŷ) = j, rT = σ], since conditioning on rT = σ, we have x̂T = ŷT . Hence, we
can define the function h : D → [0, 1], where h(j) := Pr[Π0(x̂)|T ∈ S |f(x̂) =
j, rT = σ] = Pr[Π0(ŷ)|T ∈ S |f(ŷ) = j, rT = σ].

Then, we have Pr[Π0(x̂)|T ∈ S |rT ]] = Ef(x̂)[h(f(x̂)) |rT ].
Next, observe that the function h can be expressed as a convex combination of

functions in G, because h can be interpreted as a point in [0, 1]D, whose extreme points
{0, 1}D correspond exactly to functions in G. Therefore, there is some distribution g on
G such that for all u ∈ D, h(u) = Eg[g(u)].

Finally, we have

Pr[Π0(x̂)|T ∈ S |rT ] = Ef(x̂)[h(f(x̂)) |rT ] (4)
= Ef(x̂)[Eg[g(f(x̂))] |rT ] (5)
= Eg[Ef(x̂)[g(f(x̂)) |rT ]] (6)
≤ Eg[eεEf(ŷ)[g(f(ŷ)) |rT ] + δ] (7)
= eε Pr[Π0(ŷ)|T ∈ S |rT ] + δ, (8)

as required. ut

A.2 Secure Protocol for Sum

For completeness, we describe the protocol Π0 by Chor and Kushilevitz [CK93] that is
secure against any coalition of size t with respect to the function sum using only O(nt)
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messages. Recall each party i has an input xi ∈ U := {0, 1, 2, . . . ,∆}. We assume that
addition is performed on Zp for some large enough prime p.

Out of the n parties, the parties in [t + 1] will be known as leaders. Since we only
consider coalitions of size t, at least one leader will not be in the coalition. The leader
having identity 1 will be known as the aggregator, who will compute or estimate the
total sum. The protocol Π0 consists of several stages. For simplicity of description,
a party might send messages to itself, although they are not counted in the message
complexity.
1. Each party i generates t+ 1 random numbers ρ(j)i ∈ Zp, for j ∈ [t+ 1] uniformly

at random, subjecting to
∑
j∈[t+1] ρ

(j)
i = xi. For each j ∈ [t + 1], party i sends

ρ
(j)
i to leader j.

2. Each leader j ∈ [t+ 1] computes S(j) :=
∑
i∈[n] ρ

(j)
i and sends S(j) to the aggre-

gator.
3. The aggregator computes

∑
j∈[t+1] S

(j).

Correctness. The aggregator computes
∑
j∈[t+1] S

(j) =
∑
j∈[t+1]

∑
i∈[n] ρ

(j)
i =

∑
i∈[n] xi.

Number of Messages. The first stage consists of (n − t − 1) · (t + 1) + (t + 1) · t
messages; the second stage consists of t messages. The total number of messages is
n(t + 1) − 1; the aggregator can send an additional number of n − 1 messages to all
other parties to report the sum.

Lemma 6 (Security of Protocol). The protocol Π0 described above is secure against
any coalition of size t with respect to the function sum.

Proof. Consider a coalition of size t. Since any leader receives strictly more information
than a non-leader and the aggregator receives strictly more information than everyone
else. We can assume that the coalition is [t].

Consider two vectors x,y ∈ Un such that xT = yT and
∑
i∈[n] xi =

∑
i∈[n] yi.

We argue that Π0(x) and Π0(y) have the same distribution.
Consider the messages received by T in the first stage. Since each party i generates

t + 1 random numbers that sum to xi, any t of them will be distributed independently
uniform at random. Hence, the messages received by T from any party outside the
coalition will be distributed independently uniform at random.

In the second stage, the only message received by the coalition T from a party
outside the coalition is the message S(t+1) from leader t+1. However, conditioning on
the messages received so far and the sum

∑
i∈[n] xi =

∑
i∈[n] yi, there can only be one

value S(t+1) that produces the required sum and hence there is no more randomness in
S(t+1). Therefore, it follows that Π0(x) and Π0(y) have the same distribution. ut

A.3 Distributed Differential Privacy

Having obtained a secure protocol as in Lemma 6, we next describe input perturbation
procedures that achieve DD-privacy against coalitions of size t with respect to the func-
tion sum. Combining with Lemma 5, we can obtain differentially private protocols as
promised in Theorem 2.

The following diluted geometric distribution is useful in the description of our pro-
tocols.
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Definition 6 (Diluted Geometric Distribution). Let 0 ≤ β ≤ 1, α > 1. A random
variable has β-diluted Geometric distribution Geomβ(α) if with probability β it is sam-
pled from Geom(α), and with probability 1− β is set to 0.

Lemma 7 (Moment Generating Function for Geom). Let 0 < β ≤ 1 and α > 1.
Suppose W is a random variable having distribution Geom(α) and V is a random
variable having distribution Geomβ(α). Then, we have (1) for |t| < lnα, E[etW ] =

(α−1)2
(α−1)2−α(et+e−t−2) ; (2) for |t| ≤ min{ 12 ,

√
2 ln (α+1)2

4α }, E[etV ] ≤ exp( 4αβt2

(α−1)2 ).

Proof. The first statement follows from a standard calculation. Observe that for values
of t specified in the second statement, 0 ≤ α

(α−1)2 (e
t+e−t−2) ≤ 1

2 . Using (1−u)−1 ≤
1 + 2u for 0 ≤ u ≤ 1

2 , we have E[etW ] ≤ 1 + 2α
(α−1)2 (e

t + e−t − 2).

Next, observe that E[etV ] = 1− β+ βE[etW ] ≤ 1+ 2αβ
(α−1)2

(et+ e−t− 2) ≤ e
4αβt2

(α−1)2 ,

where the last inequality comes from the fact that for all real |t| ≤ 1
2 and M ≥ 0,

1 +M(et + e−t − 2) ≤ exp(2Mt2). ut

The next lemma states that the sum of independent diluted Geometric distributions
is concentrated around 0.

Lemma 8 (Sum of Independent Diluted Geom). Let α > 1. Suppose {Yi} is a finite
sequence of independent random variables such that each Yi has distribution Geomβi(α)
for some 0 ≤ βi ≤ 1. Define Y :=

∑
i Yi. Then, for all 0 < η < 1, we have the follow-

ing.
a. Pr[|Y | ≥ 4α

α−1 ·
√∑

i βi · ln
2
η ] ≤ η.

b. If in addition
∑
i βi ≥ α ln 2

η , then Pr[|Y | ≥ 4
√
α

α−1 ·
√∑

i βi ·
√
ln 2

η ] ≤ η.

Proof. We first prove statement (b). Let λ := 4
√
α

α−1 ·
√∑

i βi ·
√

ln 2
η . For positive

t ≤ min{ 12 ,
√
2 ln (α+1)2

4α }, satisfying the bound in Lemma 7, we have

Pr[Y ≥ λ] ≤ e−λtE[etY ] ≤ exp(−λt+ 4α
∑
i βi

(α−1)2 · t
2).

The first inequality comes from a standard calculation and application of Markov
inequality. The second inequality comes from independence of the Yi’s and Lemma 7.

Set t := λ(α−1)2
8α

∑
i βi

=

√
log 2

η√∑
i βi
· α−1
2
√
α
≤ α−1

2α , where the last inequality follows from the

condition
∑
i βi ≥ α ln 2

η . Since for α > 1, α−12α ≤
√
2 ln (α+1)2

4α , we can pick this
value of t.

Hence, it follows that Pr[Y ≥ λ] ≤ exp(− 1
2λt) = η

2 . Since Y is symmetric,
Pr[|Y | ≥ λ] ≤ η, as required.

We next prove statement (a). Observe that if
∑
i βi < α ln 2

η , we can always pad
with extra randomness to make sure

∑
i βi = α ln 2

η , in which case we can argue that

with probability at least 1− η, |Y | ≤ 4
√
α

α−1 ·
√
α ln 2

η ·
√
ln 2

η = 4α
α−1 · ln

2
η . Hence, we

can remove the technical condition and conclude that with probability at least 1 − η,
|Y | ≤ 4α

α−1 ·
√∑

i βi · ln
2
η . ut
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General Strategy. In view of Fact 1, it suffices to incorporate one copy of Geom(exp( ε∆ )),
independent of rT , in the sum to achieve ε-differential privacy. The general strategy is
for each party i, for some βi, generate an independent diluted Geomβi(exp( ε∆ )) as ran-
dom noise ri to form x̂i := xi+ri. The bad eventB is that no party outside T generates
a copy of geometric noise. Suppose the vectors x and y differ by one coordinate out-
side T . Therefore, Fact 1 implies that for all subsets Q of D, Pr[f(x̂) ∈ Q|B, rT ] ≤
exp(ε) · Pr[f(ŷ) ∈ Q|B, rT ]

Moreover, Pr[B|rT ] =
∏
i/∈T (1 − βi). The values βi’s are chosen depending on

whether we want to achieve ε- or (ε, δ)-DD-privacy. Observe that Pr[B|rT ] ≤ δ implies
that

Pr[f(x̂) ∈ Q|rT ] ≤ Pr[f(x̂) ∈ Q ∧B|rT ] + Pr[B|rT ]
= Pr[f(x̂) ∈ Q|B, rT ] · Pr[B|rT ] + δ

≤ eε Pr[f(ŷ) ∈ Q|B, rT ] · Pr[B|rT ] + δ = eε Pr[f(ŷ) ∈ Q|rT ] + δ

Achieving ε-DD-Privacy (Proof of Theorem 2(a)). For each leader i ∈ [t + 1], we
choose βi = 1, while everyone else has βi = 0. Since the coalition has only size t, it
follows that there must be a party outside T that has generated an independent copy of
geometric noise. Hence, the probability of the bad event B is 0 and so ε-DD-privacy is
achieved. Analyzing the sum of t+1 independent geometric distributions by Lemma 8
give the error bound in Theorem 2(a).
Achieving (ε, δ)-DD-Privacy (Proof of Theorem 2(b)). For each party i ∈ [n], set βi
to be β := min{ 1

n−t ln
1
δ , 1}. Then, it follows that the probability of the bad event B is

(1−β)n−t ≤ δ. Observing that
∑
i∈[n] βi ≤

n
n−t ln

1
δ , using Lemma 8, the error bound

in Theorem 2(b) is proved.
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