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Abstract—We study techniques for identifying an anonymous
author via linguistic stylometry, i.e., comparing the writing
style against a corpus of texts of known authorship. We exper-
imentally demonstrate the effectiveness of our techniques with
as many as 100,000 candidate authors. Given the increasing
availability of writing samples online, our result has serious
implications for anonymity and free speech — an anonymous
blogger or whistleblower may be unmasked unless they take
steps to obfuscate their writing style.

While there is a huge body of literature on authorship
recognition based on writing style, almost none of it has studied
corpora of more than a few hundred authors. The problem
becomes qualitatively different at a large scale, as we show,
and techniques from prior work fail to scale, both in terms of
accuracy and performance. We study a variety of classifiers,
both “lazy” and “eager,” and show how to handle the huge
number of classes. We also develop novel techniques for confi-
dence estimation of classifier outputs. Finally, we demonstrate
stylometric authorship recognition on texts written in different
contexts.

In over 20% of cases, our classifiers can correctly identify
an anonymous author given a corpus of texts from 100,000
authors; in about 35% of cases the correct author is one of
the top 20 guesses. If we allow the classifier the option of
not making a guess, via confidence estimation we are able to
increase the precision of the top guess from 20% to over 80%
with only a halving of recall.

I. INTRODUCTION

Anonymity and free speech have been intertwined
throughout history. For example, anonymous discourse was
essential to the debates that gave birth to the United States
Constitution—the Founding Fathers wrote highly influential
“federalist” and “anti-federalist” papers under pseudonyms
such as Publius and Cato [1]. Fittingly, the Constitution pro-
tects the right to anonymous free speech, as the US Supreme
Court has ruled repeatedly. A 1995 decision reads [2]:

Anonymity is a shield from the tyranny of the
majority . . . It thus exemplifies the purpose behind
the Bill of Rights, and of the First Amendment in
particular: to protect unpopular individuals from
retaliation . . . at the hand of an intolerant society.

Today, anonymous speech is more-or-less equivalent to
anonymous online speech, and more relevant than ever all
over the world. WikiLeaks has permanently and fundamen-
tally changed international diplomacy [3], and anonymous
activism has helped catalyze the recent popular uprisings in
the Middle East and North Africa [4].

Yet a right to anonymity is meaningless if an anonymous
author’s identity can be unmasked by adversaries. There
have been many attempts to legally force service providers
and other intermediaries to reveal the identity of anonymous
users. While sometimes successful [5; 6], in most cases
courts have upheld a right to anonymous speech [7; 8; 9].
All of these efforts have relied on the author revealing their
name or IP address to a service provider, who may in turn
pass on that information. A careful author need not register
for a service with their real name, and tools such as Tor can
be used to hide their identity at the network level [10]. But
if authors can be identified based on nothing but a passive
comparison of the content they publish to other content
found on the web, no legal precedents or networking tools
can possibly protect them.

After all, any manually generated material will inevitably
reflect some characteristics of the person who authored
it, and these characteristics may be enough to determine
whether two pieces of content were produced by the same
person. For example, perhaps some anonymous blog author
is prone to several specific spelling errors or has other
recognizable idiosyncrasies. If an adversary were to find
material with similar characteristics that the author had
posted in an identified venue, the adversary might discover
the true identity of the blog’s author.

We investigate large-scale stylometric author identifica-
tion, enough to constitute a widespread threat to anonymity.
Previous work has shown that the author of a sample text
can often be determined based on a manual or automated
analysis of writing style, but only when the author is already
known to be among a small set of possibilities (up to
300). Koppel et al. study authorship attribution with a larger
number of authors, but this is not necessarily based on
writing style (for a detailed discussion, see Section II).
Before this work, it was unknown whether this type of attack
could apply in any scenario resembling the Internet in scale.

Our work. To answer the above question, we have
assembled a dataset comprising over 2.4 million posts taken
from 100,000 blogs—almost a billion words. We chose
blogs as our data source rather than IRC or message boards
because blog posts are more readily available due to the RSS
standard. Moreover, blogs are a common choice for political
expression, raising privacy issues.



This dataset forms the basis for a series of large-scale
experiments, in which we extract a set of features from
each post in the dataset and use them to train classifiers
to recognize the writing style of each of the 100,000
blog authors. We experimented with representative lazy and
eager classifiers: nearest neighbor (NN), naive Bayes (NB)
and support vector machines (SVM) and regularized least
squares classification (RLSC).

Our technical contributions.

1) We describe features of the data that make it difficult
to scale classification beyond a few hundred authors
(Section IV; Analysis). In particular, the “masking”
problem rules out many naive approaches (Section
V). Otherwise-excellent techniques like linear discrim-
inant analysis (LDA) fail because they are unable to
take advantage of some normalization techniques due
to the sparsity of the data (Section V-A). Efficiency is
a crucial consideration for Internet-scale analyses. We
describe our techniques for complexity improvements,
both asymptotic (Section V-B; RLSC vs. SVM) and
(large) constant factors (Section VI).

2) As with Koppel et al. [11], we find that straightforward
lazy classifiers like NN perform surprisingly well.
However, unlike the explanation of [11] (similarity-
based approaches work better than classifiers when
the number of classes is large), or that of [12] (lazy
methods are particularly well-suited to NLP applica-
tions), we find that the difference is simply due to the
difficulty of configuring more complex models with
more parameters given a small number of training
examples in each class, such as those based on an
analysis of the covariance matrix. In particular we
find that normalization makes a huge difference; an
RLSC classifier with appropriate normalization per-
forms equally well as NN.

3) We develop techniques for confidence estimation. The
first is a variant of the “gap statistic” [13] that
measures the difference between the best and the
second-best matching classes. The second is to run
two different classifiers and only output a result if
they agree. The third is to combine the above two
by meta-learning. Toward a related goal, we explore
the strategy of combining two different classifiers
using the respective confidence scores and other input
features. We show that a meta-learner can achieve a
boost in accuracy by picking the output of one or the
other classifier by estimating which is more likely to
be correct.

4) Finally, we use pairs (or tuples) of blogs listed under a
user’s Google profile as a way of generating unlabeled
text that has a different context from the correspond-
ing labeled text. We argue that validating stylometric
classification on such a cross-context dataset, which

is largely unexplored in previous work with online
corpora, is an important measure of the applicability
to many real-world scenarios.

Results and impact of our work. In experiments where
we match a sample of just 3 blog posts against the rest of the
posts from that blog (mixed in with 100,000 other blogs), the
nearest-neighbor/RLSC combination is able to identify the
correct blog in about 20% of cases; in about 35% of cases,
the correct blog is one of the top 20 guesses. Via confidence
estimation, we can increase precision from 20% to over 80%
with a recall of 50%, which means that we identify 50% of
the blogs overall compared to what we would have if we
always made a guess.

The efficacy of the attack varies based on the number
of labeled and anonymous posts available. Even with just
a single post in the anonymous sample, we can identify
the correct author about 7.5% of the time (without any
confidence estimation). When the number of available posts
in the sample increases to 10, we are able to achieve a 25%
accuracy. Authors with relatively large amounts of content
online (about 40 blog posts) fare worse: they are identified
in over 30% of cases (with only 3 posts in the anonymous
sample).

Our results are robust. Our numbers are roughly equiv-
alent when using two very different classifiers, nearest
neighbor and RLSC; we also verified that our results are
not dominated by any one class of features. Further, we
confirmed that our techniques work in a cross-context set-
ting: in experiments where we match an anonymous blog
against a set of 100,000 blogs, one of which is a different
blog by the same author, the nearest neighbor classifier can
correctly identify the blog by the same author in about 12%
of cases. Finally, we also manually verified that in cross-
context matching we find pairs of blogs that are hard for
humans to match based on topic or writing style; we describe
three such pairs in an appendix to the full version of the
paper.

The strength of the deanonymization attack we have
presented is only likely to improve over time as better
techniques are developed. Our results thus call into ques-
tion the viability of anonymous online speech. Even if
the adversary is unable to identify the author using our
methods in a fully automated fashion, he might be able to
identify a few tens of candidates for manual inspection as
we detail in Section III. Outed anonymous bloggers have
faced consequences ranging from firing to arrest and political
persecution [14; 15].

Our experiments model a scenario in which the victim
has made no effort to modify their writing style. We do not
claim that our work will work in the face of intentional
obfuscation; indeed, there is evidence that humans are
good at consciously modifying their writing style to defeat
stylometry [16]. A semi-automated tool for writing-style
obfuscation was presented in [17]. We hope that our work



will motivate the development of completely automated
tools for transforming one’s writing style while preserving
the meaning. At the same time, privacy advocates might
consider user education in order to inform privacy-conscious
users about the possibility of stylometric deanonymization
attacks. Regardless of future developments, our work has
implications for the authors of all the sensitive anonymous
speech that already exists on the Web and in various
databases around the world.

II. RELATED WORK

Stylometry. Attempts to identify the author of a text
based on the style of writing long predate computers. The
first quantitative approach was in 1877 by Mendenhall, a
meteorologist, who proposed the word-length distribution
as an author-invariant feature [18]. In 1901 he applied this
technique to the Shakespeare–Bacon controversy [19]. The
statistical approach to stylometry in the computer era was
pioneered in 1964 by Mosteller and Wallace who used func-
tion words and Bayesian analysis1 to identify the authors of
the disputed Federalist Papers [20].

The latter work was seminal; dozens of papers appeared
in the following decades, mostly focusing on identifying
different features. For an overview, see Stamatatos’s survey
[21]. These studies considered a small number of authors
(under 20) due to limitations in data availability. Since the
late 1990s, the emergence of large digital corpora has trans-
formed the nature of the field. Research in the last decade has
been dominated by the machine-learning paradigm, and has
moved away from the search for a single class of features
toward an inclusive approach to feature extraction. Some
important works are [22; 23; 24].

Like most stylometric techniques, these studies consider
“topic-free” models and are able to discriminate between
100–300 authors. They have studied different domains (e-
mail, blogs, etc.) Our own work is probably closest in spirit
to Writeprints [23], especially in our approach to feature
extraction.

The primary application of author identification during
this period shifted from literary attribution to forensics —
identifying authors of terroristic threats, harassing messages,
etc. In the forensic context, the length of the text to be
classified is typically far shorter and the known and unknown
texts might be drawn from very different domains (e.g.,
academic writing versus a threatening letter) [25]. Some
forensic linguists who focus on legal admissibility scorn
the use of online corpora for training of classifiers due to
concerns over the level of confidence in the ground truth
labels [26].

Stylometry has various goals other than authorship attri-
bution including testing for multiple authorship [27], au-
thenticity verification (e.g., of suicide notes, disputed wills,

1i.e., what we now call the Naive Bayes classifier.

etc.) [25], detection of hoaxes, frauds and deception [28],
text genre classification [29] and author profiling (e.g., age,
gender, native language, etc.) [30].

Stylometry has been used to attribute authorship in do-
mains other than text, such as music [31] and code [32],
which also have grammars and other linguistic features
shared with natural language. Other forensic tasks such as
identifying the file type of a binary blob [33] and recovering
text typed on a keyboard based on acoustic emanations [34]
use similar techniques, although the models are simpler than
linguistic stylometry.

The study of authorship attribution is scattered across
various disciplines, and is not limited to stylometric tech-
niques. We point the reader to Juola’s excellent survey [35].
Stylistics in literary criticism also has authorship attribution
as one of its goals, but it is subjective and non-quantitative;
attempts to apply it to forensic author identification have
been critized — rightly, in our opinion — as pseudoscience
[36].

Plagiarism detection can be seen as complementary to sty-
lometric authorship attribution: it attempts to detect common
content between documents, even if the style may have been
changed [38].

Privacy and online anonymity. Very little work has been
done to investigate the privacy implications of stylometry.
In 2000 Rao and Rohatgi studied whether individuals post-
ing under different pseudonyms to USENET newsgroups
can have these pseudonyms linked based on writing style
[39]. They used function words and Principal Component
Analysis on a dataset of 185 pseudonyms belonging to
117 individuals to cluster pseudonyms belonging to the
same individual. They also performed a smaller experiment
demonstrating that matching between newsgroup and e-
mail domains was possible, but they did not find matching
between RFC and newsgroup postings to be feasible.

Only Koppel et al, have attempted to perform author
identification at anything approaching “Internet scale” in
terms of the number of authors. They reported preliminary
experiments in 2006 [40] and follow-up work in 2011 [11]
where they study authorship recognition with a 10,000-
authors blog corpus. This work is intriguing but raises a
number of methodological concerns.

The authors use only 4-grams of characters as features.
It is not clear to what extent identification is based on
recognition of the author vs. the context. On the other
hand, we use various linguistic features that are known to
characterize authors, and explicitly eschew context-specific
features such as topic markers.

Indeed, character-based analysis is likely to be very
susceptible to topic biases, and Koppel et al. state that
this distinction is immaterial to them. Therefore, while an
interesting and impressive result, it is hard to characterize
their work as stylometric authorship recognition.

The susceptibility of character n-gram–based features to



context biases is exacerbated by the fact that (as far as we
can tell) Koppel et al. perform no pre-processing to remove
common substrings such as signatures at the end of posts.
Therefore we suggest that the results should be interpreted
with caution unless the technique can be validated on a
cross-context dataset.

Similarly, in another paper, Koppel et al. again study
authorship recognition on a 10,000-author blog corpus [30].
Here they test both content-based features (specifically,
1,000 words) and stylistic features. The former succeeds 52–
56% of the time, whereas the latter only 6% of the time.
In this paper, the authors note that many character n-grams
“will be closely associated to particular content words and
roots,” in line with our observations above.

Moving on, Nanavati et al. showed that stylometry enables
identifying reviewers of research papers with reasonably
high accuracy, given that the adversary, assumed to be a
member of the community, has access to a large number
of unblinded reviews of potential reviewers by serving on
conference and grant selection committees [41]. Several re-
searchers have considered whether the author of an academic
paper under blind review might be identified solely from the
citations [42; 43].

Other research in this area has investigated manual and
semi-automated techniques for transforming text to success-
fully resist identification [16; 17]. These papers consider off-
the-shelf stylometric attacks; the resilience of obfuscation to
an attack crafted to take it into account has not been studied
and is a topic for future research.

A variety of recent technological developments have made
it possible for a website to track visitors and to learn their
identity in some circumstances. First, browser fingerprinting
allows tracking a user across sites and across sessions [44].
Second, by exploiting bugs such as history stealing [45], a
malicious site might be able to find a visitor’s identity if they
use popular social networking sites. These deanonymization
techniques can be seen as complementary to ours.

Recent work has also demonstrated the ease of connecting
different online profiles of a person [46; 47]; this makes it
easier for an adversary carrying out our attack to assemble
labeled texts for large numbers of Internet users.

Behavioral biometrics — voice [48], gait [49], hand-
writing [50], keystroke dynamics [51], etc. — are ways
to fingerprint an individual that go beyond purely physical
characteristics. Stylometric fingerprints can be considered a
extension of behavioral biometrics. Our work can also be
seen as an extension of deanonymization research: while
Sweeney showed that a combination of our attributes is
surprisingly unique [52], Narayanan and Shmatikov showed
that the same principle applies to our tastes and preferences
[53]. The present work focuses on style and behavior;
the respective deanonymization algorithms show a natural
progression in complexity as well as in the amount of data
required.

III. ATTACK MODEL AND EXPERIMENTAL
METHODOLOGY

In this section, we discuss how a real attack would work,
the motivation behind our experimental design and what we
hope to learn from the experiments.

Primarily, we wish to simulate an attempt to identify the
author of an anonymously published blog. If the author
is careful to avoid revealing their IP address or any other
explicit identifier, their adversary (e.g., a government censor)
may turn to an analysis of writing style. We assume that
the author does not make any attempt to hide their writing
style, whether due to lack of awareness of the possibility of
stylometric deanonymization, or lack of tools to do so. A
semi-automated obfuscation tool was presented in [17].

By comparing the posts of the anonymous blog with a
corpus of samples taken from many other blogs throughout
the Internet, the adversary may hope to find a second, more
easily identified blog by the same author. To have any
hope of success, the adversary will need to compare the
anonymous text to far more samples than could be done
manually, so they can instead extract numerical features
and conduct an automated search for statistically similar
samples.

This approach may not yield conclusive proof of a match;
instead, we imagine the adversary’s tools returning a list
of the most similar possibilities for manual followup. A
manual examination may incorporate several characteristics
that the automated analysis does not, such as choice of
topic(s) (as we explain later, our algorithms are “topic-
free”), location2 etc. Alternately, a powerful adversary such
as law enforcement may require Blogger, WordPress, or
another popular blog host to reveal the login times of the
top suspects, which could be correlated with the timing of
posts on the anonymous blog to confirm a match. Thus the
adversary’s goal might be to merely narrow the field of
possible authors of the anonymous text enough that another
approach to identifying the author becomes feasible. As a
result, in our experiments we test classifiers which return a
ranking of classes by likelihood, rather than those which can
only return the most likely class.

Conversely, the adversary might be interested in casting a
wide net, looking to unmask one or some few of a group of
anonymous authors. In this case, it would help the adversary
to have confidence estimates of each output, so that he
can focus on the ones most likely to be correct matches.
Therefore we consider confidence estimation an important
goal.

As in many other research projects, the main challenge in
designing our experiments is the absence of a large dataset
labeled with ground truth. To measure the feasibility of

2For example, if we were trying to identify the author of the once-
anonymous blog Washingtonienne [54] we’d know that she almost certainly
lives in or around Washington, D.C.



Category Description Count

Length number of words/characters in post 2
Vocabulary
richness

Yule’s K3 and frequency of hapax legomena,
dis legomena, etc.

11

Word shape frequency of words with different combina-
tions of upper and lower case letters.4

5

Word length frequency of words that have 1–20 characters 20
Letters frequency of a to z, ignoring case 26
Digits frequency of 0 to 9 10
Punctuation frequency of .?!,;:()"-’ 11
Special
characters

frequency of other special characters
‘˜@#$%ˆ&*_+=[]{}\|/<>

21

Function
words

frequency of words like ‘the’, ‘of’, and ‘then’ 293

Syntactic cate-
gory pairs

frequency of every pair (A,B), where A is
the parent of B in the parse tree

789

Table I
THE FEATURES USED FOR CLASSIFICATION. MOST TAKE THE FORM OF

FREQUENCIES, AND ALL ARE REAL-VALUED.

matching one blog to another from the same author, we
need a set of blogs already grouped by author. However,
manually collecting a large number of blogs grouped this
way is impractical, if the experiments are to be anything
resembling “Internet scale.”

Therefore, our first approach to conducting experiments is
to simulate the case of an individual publishing two blogs by
dividing the posts of a single blog into two groups; we then
measure our ability to match the two groups of posts back
together. Specifically, we select one of a large number of
blogs and set aside several of its posts for testing. These test
posts represent the anonymously authored content, while the
other posts of that blog represent additional material from
the same author found elsewhere on the Internet. We next
train a classifier to recognize the writing style of each of
the blogs in the entire dataset, taking care to exclude the
test posts when training on the blog from which they were
taken. After completing the training, we present the test posts
to the classifier and use it to rank all the blogs according to
their estimated likelihood of producing the test posts. If the
source of the test posts appears near the top of the resulting
list of blogs, the writing style of its author may be considered
especially identifiable. As will be shown in Section VI, our
experiences applying this process have revealed surprisingly
high levels of identifiability: using only three test posts, the
correct blog is ranked first out of 100,000 in 20% of trials.

At this point, the astute reader is no doubt brimming
with objections to the methodology described above. How
can we be sure that any linking we detect in this way is
unintentional? Suppose a blog author signs each of their
posts by adding their name at the end; they would not
be at all surprised to discover that an automated tool can

3We computed Yule’s K in the same way as in [23].
4All upper case, all lower case, only first letter upper case, camel case

(CamelCase), and everything else.
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Figure 1. A sample parse tree produced by the Stanford Parser.

determine that the posts have the same author. More subtly,
rather than linking posts based on similarities in writing
style, our classifiers may end up relying on similarities in the
content covered by the writing, such as specific words related
to the topic of the blog. Not only is this problematic given
that we attempt to match test posts to labeled posts from
the same blog, we additionally anticipate that anonymously-
authored blogs will frequently tend to cover different topics
of greater sensitivity, compared to identified blogs written by
the same author. We take the following strategies in avoiding
these pitfalls:

1) We begin by filtering out any obvious signatures in
the posts by checking for common substrings. We also
remove markup and any other text that does not appear
to be directly entered by a human in order to avoid
linking based on the blog software or style templates
used.

2) We carefully limit the features we extract from each
post and provide to the classifier. In particular, unlike
previous work on author identification, we do not
employ a “bag of words” or any other features that can
discover and incorporate arbitrary content. Our word-
based features are limited to a fixed set of function
words which bear little relation to the subject of dis-
cussion (e.g., “the,” “in,” etc.). While we do make use
of single character frequencies, we exclude bigrams
and trigrams, which may be significantly influenced
by specific words.

3) We follow up the experiments described above (post-
to-blog matching) with additional experiments which
actually involve matching distinct blogs to one another.
Specifically, we assembled a small collection of sets
of blogs with the same author; for these experiments
(blog-to-blog matching), we set aside one blog as the
test content, mix the others from the same author into
the full dataset of 100,000 blogs, and then measure
our ability to pick them back out.



The results of the blog-to-blog matching experiments
roughly match the post-to-blog matching results, and we
also found the results were not dominated by any one class
of features. These facts have given us confidence that our
methods are in fact discovering links in writing style—not
blog style templates or the topic of a blog.

In addition to serving as a “sanity check” for our results
in the abovementioned manner, the cross-context setting is
arguably closer to the adversary’s practical task in some
scenarios. This is certainly not always the case: in some
applications of stylometric authorship recognition, the avail-
able labeled text might be from the same context as the
unlabeled text. This was the case in Mosteller and Wallace’s
study of the disputed federalist papers; in the blogging
scenario, an author might decide to selectively distribute
a few particularly sensitive posts anonymously through a
different channel.

Yet in other cases, the unlabeled text might be political
speech, whereas the only labeled text by the same author
might be a cooking blog. Context encompasses much more
than topic: the tone might be formal or informal; the author
might be in a different mental state (e.g., more emotional)
in one context versus the other, etc.

Thus, we can expect an author’s writing style to differ
more across different contexts than it does within the same
context, and indeed, our cross-context results are numeri-
cally somewhat weaker. In the future we hope to understand
exactly how writing style varies across contexts and to utilize
this to improve cross-context classification.

IV. DATA SOURCES AND FEATURES

Having given some high-level motivation for our ex-
perimental approach and methodology, we now detail our
sources of data, the steps we took to filter it, and the feature
set implemented.

Data sources. The bulk of our data was obtained from
the ICWSM 2009 Spinn3r Blog Dataset, a large collection of
blog posts made available to researchers by Spinn3r.com, a
provider of blog-related commercial data feeds [55]. For the
blog-to-blog matching experiments, we supplemented this
by scanning a dataset of 3.5 million Google profile pages
for users who specify multiple URLs [47]. Most of these
URLs link to social network profiles rather than blogs, so we
further searched for those containing terms such as “blog,”
“journal,” etc. From this list of URLs, we obtained RSS
feeds and individual blog posts.

We passed both sets of posts through the following
filtering steps. First, we removed all HTML and any other
markup or software-related debris we could find, leaving
only (apparently) manually entered text. Next, we retained
only those blogs with at least 7,500 characters of text across
all their posts, or roughly eight paragraphs. Non-English
language blogs were removed using the requirement that at
least 15% of the words present must be among the top 50

Feature Information Gain in Bits

Frequency of ’ 1.097
Number of characters 1.077
Freq. of words with only first letter uppercase 1.073
Number of words 1.060
Frequency of (NP, PRP) 1.032(noun phrase containing a personal pronoun)
Frequency of . 1.022
Frequency of all lowercase words 1.018
Frequency of (NP, NNP) 1.009(noun phrase containing a singular proper noun)
Frequency of all uppercase words 0.991
Frequency of , 0.947

Table II
THE TOP 10 FEATURES BY INFORMATION GAIN.

English words, a heuristic found to work well in practice.
Of course, our methods could be applied to almost any other
language, but some modifications to the feature set would
be necessary. To avoid matching blog posts together based
on a signature the author included, we removed any prefix
or suffix found to be shared among at least three-fourths of
the posts of a blog. Duplicated posts were also removed.

At the end of this process, 5,729 blogs from 3,628 Google
profiles remained, to which we added 94,271 blogs from
the Spinn3r dataset to bring the total to 100,000. Of the
3,628 retained Google profiles, 1,763 listed a single blog;
1,663 listed a pair of blogs; other 202 listed three to five.
Our final dataset contained 2,443,808 blog posts, an average
of 24 posts per blog (the median was also 24). Each post
contained an average of 305 words, with a median of 335.

Features. We extracted 1,188 real-valued features from
each blog post, transforming the post into a high-
dimensional vector. These feature vectors were the only
input to our classifiers; the text of the blog post played no
further role after feature extraction.

Table I summarizes the feature set. All but the last of these
categories consist of features which reflect the distributions
of words and characters in each of the posts. Many of them,
such as the distribution of word length and frequency of
letters in the alphabet, come from previous work on author
identification [23]. We also analyze the capitalization of
words, as we expect the level of adherence to capitalization
conventions to act as a distinguishing component of an
author’s writing style given the unedited, free-form nature of
written content on the Internet. We compute each of the letter
frequency features as the number of occurrences of a specific
letter in a post divided by the length of the post in characters.
Other single-character frequencies are computed likewise,
and word-frequency features are computed analogously, but
at the level of words. We list the 293 function words we use
in an appendix to the full version of the paper. These words
are topic-independent.

The last category of features in Table I, we use the



Figure 2. Per-post values (dots) and per-blog means (line) of an example
feature across the dataset.

Stanford Parser [56] to determine the syntactic structure
of each of the sentences in the input posts. As output, it
produces a tree for each sentence where the leaf nodes
are words and punctuation used, and other nodes represent
various types of syntactic categories (phrasal categories and
parts of speech). Figure 1 shows an example parse tree as
produced by the Stanford Parser, with tags such as NN for
noun, NP for noun phrase, and PP for prepositional phrase.
We generate features from the parse trees by taking each
pair of syntactic categories that can appear as parent and
child nodes in a parse tree tree, and counting the frequency
of each such pair in the input data.

Two previous studies, Baayen et al. [57] and Gamon
[58], used rewrite-rule frequencies extracted from parse trees
of sentences as features.5 Our syntactic-category pairs are
similar, but less numerous (in Gamon’s work, for instance,
the number of possible rewrite rules is over 600,000). The
rationale for our choice was that this could make our
classifiers more robust and less prone to overfitting, not to
mention more more computationally tractable.

We re-emphasize that we strove for these features to
reflect aspects of writing style that remain unchanged for
some given author, regardless of the topic at hand. In
particular, the frequencies of 293 function words contain
little meaning on their own and instead express grammatical
relationships, so they avoid revealing information about the
topic while capturing the writing style of the author.

To gain a better intuitive understanding of the relative
utility of the features and for use in feature selection, we
computed the information gain of each feature over the entire
dataset [59]. We define information gain as

IG(Fi) = H(B)−H(B|Fi) = H(B)+H(Fi)−H(B,Fi),

where H denotes Shannon entropy, B is the random variable
corresponding to the blog number, and Fi is the random

5An example of a rewrite rule is A:PP→ P:PREP + PC:N, meaning
that an adverbial prepositional phrase is constituted by a preposition
followed by a noun phrase as a prepositional complement [21].

variable corresponding to feature i. Since the features are
real-valued, and entropy is defined only for discrete random
variables6, we need to sensibly map them to a set of
discrete values. For each feature, we partitioned the range of
observed values into twenty intervals. We reserved one bin
for the value zero, given the sparsity of our feature set; the
other nineteen bins were selected to contain approximately
equal numbers of values across all the posts in the dataset.

A portion of the result of this analysis is given in Table II,
which lists the ten features with greatest information gain
when computed as described. Several other binning methods
were found to produce similar results. With information
gains, measured in bits, ranging from 1.097 to 0.947, these
features can all be considered roughly equal in utility.
Perhaps least surprisingly, the length of posts (in words and
characters) is among the best indicators of the blog the posts
were taken from.7 Several punctuation marks also appear
in the top ten, along with the three most common patterns
of upper- and lowercase letters and two syntactic category
pairs.

To give a sense of the typical variation of feature values
both within a blog and between different blogs, Figure 2
displays a representative example of one of these ten fea-
tures: the frequency of all lowercase words. The plot was
generated by sorting the 100,000 blogs according to the
mean of this feature across their posts. The means are shown
by the solid line, and the values for individual posts are
plotted as dots. For legibility, the figure only shows every
third post of every one hundredth blog. As one might expect,
the values vary from post to post by much larger amounts
than the differences in mean between most pairs of blogs,
indicating that this feature alone carries a fairly small amount
of information. The corresponding plots for features with
lower information gain look similar, but with less variation
in means or more variation between individual posts from
the same author.

Analysis. Perhaps the most important aspect of our data
set is the large number of classes and training examples. As
the number of classes increases, the nature of the classifi-
cation task changes fundamentally in two ways: accuracy
and computational demands. An immediate consequence
of having more classes is that they become more densely
distributed; the number of classes that are ”close” to one
another increases. As such, the decision boundary that
separates each class now has to accurately distinguish it from
a much larger number of close alternatives. This general
principle manifests in different ways; “masking” (Section
V-B) is a common problem.

At the same time, the large number of examples places
hard limits on the kinds of classifiers we can use — anything

6A definition also exists for continuous random variables, but applying
it requires assuming a particular probability mass function.

7However, these features may not be as useful in the cross-context
setting.
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with a superlinear training complexity is infeasible. A simi-
lar restriction applies to the way we adapt binary classifiers
to handle multiple classes. In particular, the popular and
robust “all-pairs” multiclass regime falls out of the picture
because it requires comparing all pairs classes.

While the above argument holds for any large dataset, ours
is particularly problematic because there are a small number
of training examples per class. On average, there are only 24
posts for each author, and indeed, 95% of all authors have 50
posts or less. Compounding the lack of data is the sparsity
of each sample; each post has approximately 305 non-
zero dimensions. These factors are troublesome compared to
the 1188 dimensions we use to represent the data because
there are very few examples with which to estimate class
specific parameters. In particular, methods such as nearest-
neighbors that rely on estimating class means should do well,
but anything that requires estimating a covariance matrix
(e.g. RLSC and SVM) for each class will require heavy
regularization.

Finally, Figure 3 is a plot of the eigenvalue spectrum
we obtain from running a Principal Component Analysis
on the data (note that the y-axis is logarithmic). Based
on this analysis, a number of dimensions are spurious —
we could represent the data to 96% accuracy using only
500 dimensions. While this presents a sizeable reduction
in dimensionality, it is not enough to allow for reliable
estimation of anything more than a class centroid. We would
have to represent the data at 27% accuracy in order to shrink
it to a number of dimensions that is not limited by the low
number of samples per class.

V. CLASSIFICATION

A. Normalization

We utilized three types of normalization:
• row-norm Rescale each row (training or test point) to

have norm 1, i.e., divide each entry in a row by the
norm of that row.

• feature-mean Rescale each column (feature) to have
mean 0 and variance 1, i.e., subtract the mean from
each column and divide by the standard deviation.

• feature-mean-nonzero Rescale each column so that
the nonzero entries have mean 1, i.e. divide by the mean
of the nonzero entries of each column (since all features
are nonnegative).

Row normalization is essential because it allows us to
compare different documents based on the relative dis-
tribution of features in the document and irrespective of
its norm. Similarly, column normalization allows us to
combine information from different features when they are
measured in different units. While the feature-mean is
a standard normalization in statistics, our feature-mean-
nonzero warrants some explanation. Like feature-mean,
this normalization provides scale invariance but it calcu-
lates the normalization parameter from the support of each
feature, i.e. the nonzero entries. Since the majority of our
columns are sparse, focusing on the support allows us to
capture structure specific to the nonzero entries. A statistic
such as the average would be unecessarily skewed towards
zero if we calculated it the standard way. Moreover, since
we divide the features by the mean of their support rather
than subtracting it, all nonzero entries are still positive
and zero entries are still zero so they are distinct from
the average value of the support, which is 1. Finally, the
order of normalization is important; we perform column
normalization followed by row normalization.

B. Classifiers

This section discusses the algorithms and configurations
we used to identify authors. We denote a labeled example
as a pair (~x, y), where ~x ∈ Rn is a vector of features and
y ∈ {1, 2, . . . ,m} is the label. In our case, n = 1188,
the number of features; and m = 100000, the number
of blogs in our dataset. After training a classifier on the
labeled examples, we present it with one or more unlabeled
examples ~x1, ~x2, . . ., test posts taken from a single blog in
the case of post-to-blog matching experiments, or an entire
blog in the case of blog-to-blog matching. In either case,
we rank the labels {1, 2, . . . ,m} according to our estimate
of the likelihood that the corresponding author wrote the
unlabeled posts.

One key difference between our experiments and the
typical classification scenario is that we know that ~x1, ~x2, . . .
have the same label. To exploit this knowledge we collapse
the vectors ~x1, ~x2, . . . to their mean, and classify that single
vector. Another possibility that we did not try would be to
classify each point separately and use some form of voting
to combine the decisions. Two points of note: first, collaps-
ing the feature vectors is not mathematically equivalent to
treating all of the author’s writing as a single document.
Second, we have described how we handle different points
with the same label for classification, not training. During



training we collapse the feature vectors for some classifers,
but not others, as described below.

Nearest Neighbor. To train the nearest neighbor classifier
we collapse each class’ training examples into its centroid.
The most common form of the nearest neighbor algorithm
treats each training example separately and therefore stores
all of the training data. However, this approach is too slow
for our dataset. Thus, we only store one centroid per class,
effectively providing a “fingerprint” for each blog. A new
point is classified by computing its Euclidean distance to
each of the fingerprints and using the label of the closest
class.

Linear Discriminant Analysis. Linear Discriminant
Analysis (LDA) is a popular algorithm for text classification
and is among the top performers if we do not normalize
our data. However it cancels out any feature normalizations
that we perform (we discuss this more precisely in the full
version of the paper). We find feature normalization to be
particularly necessary with our data and large number of
classes, so we do not include this classifier in our final
results.

Naive Bayes. The standard Naive Bayes classifier as-
sumes individual features are distributed according to a
Gaussian distribution and are conditionally independent for
each class. Mathematically, it works similarly to our nearest
neighbor implementation, but it also takes each feature’s
variance in account. Specifically, we train by computing the
mean µi and variance 8 σ2

i of each feature i for each class.
We classify a point ~x = (x1, . . . , xn) by selecting the closest
class, where distance is computed as

n∑
i=1

(xi − µi)
2

σ2
i

+ log(σ2
i )

Note that this a weighted Euclidean distance that places
greater value on features with less variance and that nor-
malizes across classes by taking into account the log(σ2

i ),
the total variance of each class.

Binary Classifiers Thus far, we have discussed inherently
multiclass classifiers. However, there is a large literature on
binary classifiers that we would like to experiment with. We
can extend a binary classifier to the multiclass setting by
training numerous binary classifiers. The two most popular
methods for doing this are the one-vs-all and all-pairs
regimes. In the former, a classifier is trained for each class by
labelling all points that belong to that class as positive and all
others as negative. A point is labelled by running it through
all of the classifiers and selecting the classifier which votes
most positively. In an all-pairs regime, a classifier is trained
for each pair of classes, resulting in a number of classifiers
that is quadratic in the number of classes. This approach is

8A small-sample correction of 5× 10−6 was added to each variance
to prevent it from being zero. This occurs frequently because our features
are sparse so that some features are never seen in a particular class.

far too costly when there are 100,000 classes, so we only
consider one-versus-all.

Masking. As demonstrated by our experiments, the stan-
dard one-versus-all regime can mask certain classes so that
points from them will always be mislabeled. Restricting
ourselves to linear binary classifiers — which are the only
kind of binary classifers we consider in this paper — the
root of this problem stems from the one-versus-all regime’s
assumption that each class can be separated from all of the
others using a linear decision boundary. This assumption is
reasonable only when there are many more dimensions than
classes; as soon as the number of classes is on the same
order as the dimensionality of the data, we run into trouble.
In our case, there are far more classes than dimensions and
the masking problem is particularly severe. In experiments in
which we used 50,000 testing points, each from a distinct
class, only 628 distinct classes were predicted by RLSC.
Moreover, the same 100 classes appeared in over 82% of
the predicted labels. This masking problem therefore makes
the standard one-versus-all scheme unusable with any binary
classifier. We present a weighting scheme that alleviates
this problem in the section on Regularized Least Squares
Classification.

Support Vector Machine (SVM). SVMs are a popular
binary classifier [60; 61] and we use the SVM Light imple-
mentation [62]. Ideally, we would provide each SVM with
all of the posts, but the large size of our dataset makes this
infeasible. We use posts from a sample of 1000 blogs as
negative examples and retain all positive examples for each
one-vs-all classifier. To improve the ability of an SVM to
distinguish between its associated class and all others, we
ensure that this set of 1000 blogs includes the 100 closest
classes as determined by the Euclidean distance of the
class centroids. The remaining 900 are selected uniformly
at random. we use a simple linear kernel for classification.

Regularized Least Squares Classification (RLSC).
RLSC is an adaptation of the traditional least squares regres-
sion algorithm to binary classification. It was introduced as a
computationally efficient alternative to SVMs and has simi-
lar classification performance. The main difference between
the two is that RLSC uses a squared loss to penalize mistakes
while SVM uses a non-differentiable “hinge loss.” The
former admits a closed form solution that uses optimized
linear algebra routines; SVMs rely on convex optimization
and take longer to train. This efficiency does not require us
to subsample the data when training so that unlike SVMs,
RLSC uses all of the training data. Perhaps the most notable
computational difference between the two is that it takes
the same time to solve for a single RLSC classifier as it
does to solve for T separate ones in a one-vs-all scheme
with T classes. Thus, our computation time with RLSC is
O(nd2+d3) versus O(nd2+Td3) with SVM for n training
examples in d dimensions.

Since RLSC is a binary classifier, we employ a one-vs-all



regime to extend it to multiple classes. However, we found
that the aformentioned masking problem makes RLSC per-
form very poorly. We remedy the situation by weighting the
training data given to each one-vs-all classifier. In particular,
consider what happens when we train a one-vs-all classifier
with 100, 000 classes: there are, on average, 99, 999 times
more negative examples than positive ones. There is little
incentive for the classifier to learn anything since it will
be overwhelmingly correct if it simply labels everything as
negative. We counteract this problem by penalizing errors
on positive examples more so that they have effectively
the same weight as negative examples. After some careful
algebra, this approach, which is the version of RLSC we
will use in the remainder of the paper, preserves the efficient
runtime of RLSC and improves accuracy by two orders of
magnitude.

Classifier Configurations. While we would like to report
our classifiers’ performance with all combinations of fea-
tures and normalization, we only report a tractable subset
that illustrates the effects of normalization and masking.
We used the Naive Bayes classifier with the 400 features
with greatest information gain and no normalization to
showcase the best performance without any normalization.
Next, the nearest neighbor classifier uses two choices of
normalization: row-norm and feature-mean; row-norm
and feature-mean-nonzero to demonstrate the benefits of
our sparse feature normalization method over the standard
one. In the way of binary classifiers, we report the SVM
with a linear kernel and a standard one-vs-all regime using
row-norm and feature-mean normalizations to illustrate
the issue of masking. Finally, RLSC is shown with a linear
kernel and weighted one-vs-all regime using row-norm and
feature-mean-nonzero normalizations and is one of the
top performers. Although SVM would have similar accuracy
as RLSC using the same configuration, the latter was more
useful because its speed allowed us to experiment with many
configurations.

Lazy vs. eager. The existing literature on authorship attri-
bution distinguishes between “eager” and “lazy” classifiers
[12] as ones which spend time computing a model from
training data versus ones, such as nearest neighbors, that
simply store the data and rely on a good distance function for
classification. This distinction appears in Koppel et al. under
a different name when they discuss similarity-based (lazy)
and machine-learning (eager) classification paradigms. We
find this black-and-white distinction to be unhelpful because
methods often fall on a spectrum. Indeed our implementation
of nearest neighbor — a prototypical lazy method —-
summarizes information by learning the mean of each class.
Moreover, the one-versus-all method for SVM or RLSC
bears a substantial resemblance to the lazy approach because
dot products are a similary measure. Similarly, LDA, which
at first blush is an eager method, is also a similarity-based
method because it classifies by finding the Mahalanobis dis-

tance — a generalization of Euclidean distance — between
the mean of each class and the point in question. Finally
unlike Koppel et al., our experiments indicate that when
properly configured, lazy and eager approaches have a very
similar performance profile for all values of N , the number
of classes.

C. Confidence estimation and combining classifiers

A confidence estimator is a real-valued function that
takes the input/output pair of a classifier as input, and
that outputs a positive score. Larger scores correspond to
higher confidences; the score is intended to be monotonically
increasing in the probability of correctness of the classifier’s
output. A more sophisticated confidence estimator might
be able to produce an actual probability score, but this
stronger requirement is not a goal for us. Applying different
thresholds to the confidence score allows to achieve various
trade-offs between precision and recall.

In more detail, consider a classifier C and a confidence
estimator confC . This allows us to build a classifier Ct

parametrized on a threshold t, which outputs C(x) on input
x if confC(x,C(x)) ≥ t and ⊥ otherwise. The recall of Ct

is the ratio of correct outputs of Ct to the correct outputs
of C, and its precision is the probability of a correct answer
on only the examples it attempts to answer.

In general, recall and precision are inversely related; if
we attempt to label more examples, we will produce more
examples with correct labels, but even more examples with
incorrect labels. A good estimate of confidence is critical
to the recall-precision tradeoff. If the assumption about the
monotonicity of the relationship between confidence and
probability of correctness holds, then recall and precision
will be inversely related. However, if we are unfortunately
misguided to attempt an answer the harder a point is to label,
lower recall rates will also have a lower precision!

We use the “gap statistic” that was described in [13]; a
similar heuristic called “eccentricity” was described in [53].
The gap statistic applies to classifiers that output a distance
or a similarity score between a test point and each class. This
is a property that’s required in practice for many purposes,
for example, to employ a one-versus-all strategy. Recall that
nearest neighbor, SVM and RLSC all output a distance or
distance-like score.

At its core, the gap statistic simply outputs the magni-
tude of the difference between the best match (i.e., lowest
distance) and second best match. The rationale is a simple
Bayesian argument: if the output of the classifier is incorrect,
the best score is unlikely to be well-separated from the
rest of the scores—there is no particular reason to expect
one incorrect class to match significantly better than other



incorrect classes.9

On the other hand, it is possible, although by no means
certain, that the best score is highly separated from the rest
when the classifier output is correct. Intuitively, the more
clustered together the points of a class are, i.e., the more
distinct an author’s writing style, the more likely this is to
happen. Flipping around the prior and posterior, we see that
a high gap statistic implies that it is more likely that the
classifier output is correct. We found that when using the
gap statistic with nearest-neighbors, it was also useful to
perform the row-norm normalization. No normalization was
necessary for RLSC.

Finally, while the gap statistic is the key ingredient of
the confidence score, it is not the only one. We use a
meta-learner that combines the gap with one other feature,
namely the number of available training points for the top
scoring class. The rationale for this feature is the obvious
one: classifications based on more training data are more
likely to be correct. In general, we can imagine using any
(or all!) features of the input, although we do not have a
strong reason to believe that this will result in a significant
improvement.

An entirely different approach to confidence estimation is,
given a classifier C, to employ an auxiliary classifier Caux,
and to measure the level of agreement between the outputs
of C and Caux. In the simplest case, we check whether or
not the top match in both cases is the same, and output 1 or 0
accordingly. Thresholding based on this confidence measure
is equivalent to only producing an output if C and Caux

produce the same output. Thus the roles of C and Caux are
symmetrical.

This leads naturally to the idea of combining two (or
more) classifiers, both for improving accuracy and for con-
fidence estimation. The two goals are closely linked to each
other. As before, we can use a meta-learner based on all
available features to pick the output of one or the other
classifier, although we choose to restrict ourselves to the
gap statistic and the number-of-training-points feature.10. For
confidence estimation, we use the above, together with a
measure of agreement between the two classifiers. The latter
is derived by looking at the top k outputs of each classifier.

As the reader is no doubt aware, there is a trememdous
amount of work in the machine learning literature on stacked
generalization, boosting and ensemble methods. Our goal in
investigating combinations of classifiers is not to break new
ground in these areas, but rather to show that it improves
accuracy, demonstrating that our numerical results are only
a lower bound. We suspect that an adversary interested in
squeezing out the last percentage-point of precision will be

9Which is not to say that it can’t happen: in the pathological worst
case, all blog posts in the test set might consist of text entirely quoted
from another blog, and yet not denoted as such via HTML tags, making it
challenging to filter out automatically.

10Since there are two classifiers, this gives us a four-dimensional space
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able to go quite a bit farther.

VI. EXPERIMENTAL RESULTS

In Figure 6 which summarizes our most important results,
we provide the full distribution of outcomes obtained by ap-
plying various classifiers to the post-to-blog experiment III.
We now give the details of the procedure used to obtain
these results.

In each trial, we randomly selected three posts of one
blog and set them aside as the testing data. The classifiers
were then used to rank each blog according to its estimated
likelihood of producing the test posts. Of course, we were
careful to ensure that the classifiers were not given the
test posts during training. For this experiment, we only
selected blogs from the Spinn3r dataset as the source of
test posts, but we used the classifiers to rank all 100,000
blogs. In each trial, we recorded the rank of the correct
blog; Figure 6 displays the CDF of these rankings. NN1
refers to nearest neighbor with the normalizations row-norm
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Figure 6. Results of the post-to-blog matching experiments, using three posts (roughly 900 words). The y-axis is the probability that the correct class
was among the top K ranks, for each K (x-axis).
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Figure 8. Confidence estimation: precision vs. recall.

and feature-mean and NN2 uses row-norm and feature-
mean-nonzero. NN2+RLSC is a combination of those two
classifiers using a meta-classifier as described in the previous
section.

Several interesting results can be directly read off the
graphs.

• SVM’s accuracy drops off rapidly to the left of rank =
100. This provides evidence for the masking problem.
In particular, SVM’s accuracy when looking at only the
top ranked blog is essentially zero.

• Naive Bayes and nearest neighbor with the straightfor-
ward normalization (NN1), by default perform surpris-
ingly well for such simple methods, with the top ranked
class being the correct one in about 8% of cases for
Naive Bayes.

• Better normalization makes a tremendous difference for
nearest neighbor: it quadruples the accuracy at rank =
1 and almost triples it even at rank = 100.11

• RLSC is the best individual classifier for rank ≥ 3.
It has a nearly 30% probability of placing the correct
blog among the top 10 results.

• The metaclassifier using NN2 + RLSC is better than
any individual classifier for small k. It picks the correct

11Although RLSC with row-norm and feature-mean isn’t shown, the
difference between feature-mean and feature-mean-nonzero was even
more pronounced for RLSC.
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Figure 9. Post-to-blog matching using three posts and NN2 while limiting the feature set.

class as the top ranked match about 20% of the time,
and places it within the top 20 ranks about 35% of the
time.

Impact of training set and test set size. Figure 4 displays
the results of the post-to-blog matching experiment when the
number of unlabeled testing examples varies. At an average
of 305 words, one post is similar in size to a comment on
a news article or a message board post, so these results are
indicative of the ability to match an isolated online posting
against our blog corpus. Some blogs do not have enough
data so we can only use a subset of the blogs as the number
of testing examples increases beyond 3. The “Normalized”
line adjusts for population bias by subtracting the difference
in accuracy between each subset and all of the blogs when
measured at 3 testing examples.

Our results indicate that while the identifiability of small
amounts of text is markedly reduced, we still achieve a
7.5% accuracy. Furthermore, the curves appear to reach an
asymptote at around 10 samples per class with an accuracy
of around 25%. We believe that this accuracy is a lower
bound on the performance that could be achieved with more
data; with an average of 24 posts per blog, our algorithms
have little data to work with once we remove 10 posts for
testing.

Figure 5 shows the impact of training set size. The number
of training examples is a different factor from the amount of
text (in words), although of course they are highly correlated.
The former seems a better predictor of performance in our
experiments. One possible reason is that text split up in
different posts over time allows us to capture the variance in
an author’s stylometric markers. This argues against methods
that work by collapsing all available text into a single
document.

Two points are evident from the graph: first, accuracy
is poor with less than 7-10 training examples. Second, we
continue making significant gains until about 40 examples
or so, after which accuracy plateaus. This suggests that
authors who wish to publish anonymously should consider

the amount of material they have already written that appears
online.

Confidence estimation Figure 8 shows the results of
confidence estimation for 3 classifiers with precision traded
off against recall via the metaclassifier described in Section
V-C. A precision of 50% is achieved with a recall of just
under 80%, and conversely, a 50% recall gives over 80%
precision!

Blog-to-blog matching. Each trial of the blog-to-blog
matching experiment consisted of randomly selecting one
of the blogs obtained from the Google profiles, then ranking
the other 99,999 blogs based on their similarity to its posts.
The rank of the other blog listed on the same Google profile
was then saved as the outcome, producing the results given
in Figure 7. In the (uncommon) case of more than one
additional blog listed on the Google profile, the highest
ranked was considered the outcome, on the grounds that
an adversary would be interested in linking an anonymous
blog to any material from the same author.

We only show the classifiers NB, SVM and NN1. NN2
produced little or no gains compared to NN1; we suspect
that this is because the difference in normalization is mainly
effective when the number of test samples is low. Unfortu-
nately, we perfected our RLSC technique only very recently,
and have not yet used it for blog-to-blog matching since it
requires some analytical modifications.

We also applied our confidence estimator and obtained
results similar to the post-to-blog experiments; for example,
about 50% precision with 50% recall. The full results are
omitted.

Impact of feature choice. To help confirm the validity of
our results, we also manually inspected a small sample of
the blogs that were most easily matched in each experiment,
since these would be the ones most likely to contain any
post signatures or other illegitimate text that might have
escaped our filtering. Nothing that could significantly affect
the results was found. As a further check, we ran our
experiments with the NN2 classifier using only subsets of the



features in order to determine whether one particular type
of feature was especially crucial to its performance. The
results are shown in Figure 9. We can break our features
into four groups, and these are the first 4 feature sets shown
in the graph. It is clear that none of the feature sets alone
come close to the 18% accuracy we get when using all
of the features. Using single character frequencies, function
words, or syntactic category pairs alone gives about the same
performance at 7− 8%. We also see that the syntactic pair
features used alongside those of [23] boost performance by
2%.

Performance. We implemented our classifiers using a
variety of programming languages and libraries, including
Matlab and Python/Numpy. In the end, Matlab proved to be
the fastest because of its optimized linear algebra routines.
Of the classifiers we experimented with, nearest-neighbor is
the simplest and therefore the fastest to train and test with.
Computing the class centroids (i.e., collapsing each class)
takes a negligible amount of time and classifying 150,000
points from 50,000 distinct classes takes 4.5 minutes. RLSC
requires substantially more processing to train, so it takes 12
minutes to train on all of the data, minus the three points
that are removed for testing. After training, RLSC behaves
like NN in how it makes predictions.

Finally, we present several “tricks” that lead to a dramatic
speedup in running time. The most significant factor during
the prediction phase is to express computations as matrix
multiplications. For example, RLSC predictions are obtained
by computing the inner product of all one-versus-all classi-
fiers with each testing sample. The Euclidean distance used
in nearest-neighbors can be expanded to a similar series of
inner products. Once our computations are represented as
matrix multiplications, we can the compute everything in
large batches that make full use of the computer’s hardware.
This trick alone brought prediction time down from 10 hours
to the aformentioned 4.5 minutes. Interestingly, we found it
was several times faster to avoid sparse format representa-
tions of our data because they are not as optimized. Finally,
we employ a form of dynamic programming for RLSC that
decreases the number of computations dramatically. This too
brings down training time from two days to 12 minutes.

VII. LIMITATIONS, FUTURE WORK AND CONCLUSIONS

Our work has a few important limitations. First, the attack
is unlikely to work if the victim intentionally obfuscates
their writing style. Second, while we have validated our
attack in a cross-context setting (i.e., two different blogs),
we have not tested it in a cross-domain setting (e.g., labeled
text is a blog, whereas anonymous text is is an e-mail).
Both these limitations are discussed in detail in Section III.
Finally, our method might not meet the requirements of
forensics applications where the number of authors might
be very small (the classification task might even be binary)
but amount of text might be very limited.

We point out three main avenues for future research in
terms of sharpening our techniques. First, studying more
classifiers such as regularized discriminant analysis, and
fully understand the limitations and advantages of each.

Second, investigating more principled and robust ap-
proaches for extending binary classifiers to a highly multi-
class setting. One important avenue is “all pairs,” where
every class is compared against every other class. As one
might imagine, this method gives good results, but is compu-
tationally prohibitive. A “tournament” between classes using
a binary classifier is a promising approach, and we have
some early results in this area.

Finally, while we have demonstrated the viability of
our techniques in a cross-context setting, a more thorough
investigation of different classifiers is necessary, along with
an analysis of the impact of training and test set size.
Understanding and modeling how writing style is affected
by context has the potential to bring major gains in accuracy.

To conclude, we have conducted the first investigation
into the possibility that stylometry techniques might pose a
wide-spread privacy risk by identifying authors of anony-
mously published content based on nothing but their style
of expression. Previous work has applied similar techniques
to distinguish among up to 300 authors; we consider the
scenario of 100,000.

Our findings indicate these techniques remain surprisingly
effective at this scale: in about 20% of trials in each
experiment, the author of the sample is ranked first among
all 100,000. Authors with large amounts of text already
online are even more vulnerable. Even in the cases where
the author of a text is not the one estimated most likely
to have produced it, some risk of identification remains.
Specifically, in the median case, the likely authors of a
sample can be narrowed down to a set of 100–200, a
reduction by a factor of 500–1000. While this alone is
unlikely to produce a match with any certainty, if it is
combined with another source of information, it may be
enough to make the difference between an author remaining
anonymous and being identified.

Importantly, our findings only represent a lower bound
on the severity of this type of risk, and we can expect the
development of more sophisticated techniques to worsen
the situation. Useful future work to address the privacy
threat would include further characterizations of the most
vulnerable authors, and improved writing-style obfuscation
techniques.
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