A LATEX Tutorial

David Wagner

U.C. Berkeley
daw@cs.berkeley.edu

Why $\operatorname{LAT}_{\mathrm{E}} \mathrm{E}$?

- Best way to typeset mathematics (vastly better than MS-Word)
- Most popular typesetting system among computer scientists
- Can be used to produce beautiful output

How to use $\angle A T_{E} X$?

1. Create hw1.tex with your favorite text editor.
2. Compile: pdflatex hw1.tex

This produces hw1.pdf.
3. View: acroread hw1.pdf

How to use $\angle A T_{E} X$?

1. Create hw1.tex with your favorite text editor.
2. Compile: pdflatex hw1.tex This produces hw1.pdf.
3. Fix syntax errors, and go back to step 2.
4. View: acroread hw1.pdf
5. Fix typesetting errors, and go back to step 2.

Sample document

	\documentclass\{article\} \begin\{document \} } $\\ {\text { Hello, world! }} \\ {\text { Input: }} \\ {\text { lend\{document \} }}$

Output: Hello, world!

Sample document

From here on in, l'll omit the \documentclass \{... \}, \backslash begin $\{d o c u m e n t\}$ and $\backslash e n d\{d o c u m e n t\}$. Thus:

Input: Hello, world!

Output: Hello, world!

Paragraphs

```
Line breaks in latex source
are irrelevant, except that
blank lines indicate the start
of a new paragraph.
See how this
works?
```

Line breaks in latex source are irrelevant, except that blank lines indicate the start of a new paragraph.

See how this works?

Commands

```
Commands use a backslash.
Arguments are indicated with curly braces.
Let's try some \emph{italized} text.
```

Commands use a backslash. Arguments are indicated with curly braces.

Let's try some italized text.

Mathematics

```
In-line mathematics is enclosed
within dollar signs.
$3-2=1$ looks better than 3-2=1.
$12x+5 > y$ looks better than 12x+5 > y.
```

In-line mathematics is enclosed within dollar signs.
$3-2=1$ looks better than $3-2=1$.
$12 x+5>y$ looks better than $12 \mathrm{x}+5 ; \mathrm{y}$.

Superscripts

Squaring: \$x^2\$. Higher powers: \$x^n\$. Or: $\$(2 n+1)^{\wedge} 3=8 n^{\wedge} 3+12 n^{\wedge} 2+6 n+1 \$$. Squaring: x^{2}. Higher powers: x^{n}. Or: $(2 n+1)^{3}=$ $8 n^{3}+12 n^{2}+6 n+1$.

Superscripts

Warning: If you have more than
one character in the exponent, you
must use curly braces for grouping.
Correct: $\$ x^{\wedge}\{2 n\} \$$. Wrong: $\$ x^{\wedge} 2 n \$$.

Warning: If you have more than one character in the exponent, you must use curly braces for grouping. Correct: $x^{2 n}$. Wrong: $x^{2} n$.

Subscripts

```
Index: \$x_i\$ and \$2x_i + 1\$.
```

Beware: curly braces needed for grouping, as before.
Correct: \$x_\{2j+1\}\$. Wrong: \$x_2j+1\$.

Index: x_{i} and $2 x_{i}+1$.
Beware: curly braces needed for grouping, as before. Correct: $x_{2 j+1}$. Wrong: $x_{2} j+1$.

Equations

$$
\begin{aligned}
& \$ 1+1=2 \$. \quad \$ \mathrm{x} \backslash \mathrm{not}=\mathrm{y} \$. \\
& \$ 5<6 \$. \quad \$ 5 \backslash \text { le } 7 \$. \quad \$ 5 \text { \ge } 0 \$. \\
& \$ \mathrm{x} \backslash i n \mathrm{~S} . \quad \$ \mathrm{y} \backslash \operatorname{lnot} \backslash \mathrm{in} \mathrm{~S} \$. \$ \mathrm{~S} \text { \subseteq } \mathrm{T} .
\end{aligned}
$$

$$
\begin{aligned}
& 1+1=2 . x \neq y . \\
& 5<6.5 \leq 7.5 \geq 0 . \\
& x \in S . y \notin S . S \subseteq T .
\end{aligned}
$$

Logic

$\neg P . P \vee Q . R \wedge S$.
$T \Longrightarrow U . P \vee P \equiv P$.
I claim that $\forall x \in S . P(x)$. Moreover, $\exists x \in S . Q(x)$.

Some examples

Consider any integer $\$ n>2 \$$.
Then the equation $\$ x^{\wedge} n+y^{\wedge} n=z^{\wedge} n \$$ has no solutions for $\$ x, y, z \$$ in the integers.

Consider any integer $n>2$. Then the equation $x^{n}+$ $y^{n}=z^{n}$ has no solutions for x, y, z in the integers.

Some examples

$$
\begin{aligned}
& \text { Define } \$ \mathrm{f}(1)=1 \$, \\
& \$ \mathrm{f}(\mathrm{n})=\mathrm{f}(3 \mathrm{n}+1) \$ \text { if } \$ \mathrm{n} \$ \text { is odd, } \\
& \text { and } \$ \mathrm{f}(\mathrm{n})=\mathrm{f}(\mathrm{n} / 2) \$ \text { if } \$ \mathrm{n} \$ \text { is even. } \\
& \text { Collatz conjectured that } \$ \mathrm{f}(\mathrm{n}) \$ \\
& \text { always terminates and returns } 1 .
\end{aligned}
$$

Define $f(1)=1, f(n)=f(3 n+1)$ if n is odd, and $f(n)=f(n / 2)$ if n is even. Collatz conjectured that $f(n)$ always terminates and returns 1 .

Displayed equations

```
Sometimes you want an equation on
its own line, like this:
\[ (x-3)^2 \ge 0. \]
```

Sometimes you want an equation on its own line, like this:

$$
(x-3)^{2} \geq 0
$$

Sums, products, and fractions

$$
\begin{aligned}
& \text { Useful: } \\
& \backslash\left[1^{\wedge} 2+2^{\wedge} 2+\backslash l \operatorname{dots}+n^{\wedge} 2\right. \\
& =\backslash \text { sum_\{i=1\}^n } i^{\wedge} 2 \\
& =\backslash \operatorname{frac}\{n(n+1)(2 n+1)\}\{6\} . \backslash] \\
& \backslash\left[n!=\backslash \operatorname{prod} _\{j=1\}^{\wedge} n \quad j . \backslash\right]
\end{aligned}
$$

Useful:

$$
\begin{gathered}
1^{2}+2^{2}+\ldots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} \\
n!=\prod_{j=1}^{n} j
\end{gathered}
$$

Environments

```
\begin{quote}
Q: How many Stanford students does it take
to screw in a light bulb?
A: One, dude.
\end{quote}
```

Q: How many Stanford students does it take to screw in a light bulb?

A: One, dude.

Environments

\begin } \{ verbatim \}
Q: How many professors does it take to screw in a light bulb?
A: Only one, but they get three tech. reports out of it.
\end\{verbatim\} }

Q: How many professors does it take to screw in a light bulb? A: Only one, but they get three tech. reports out of it.

Environments

```
\begin{center}
Q: How many slides does it take
until we get to a joke that is
actually funny?
A: $\infty$.
\end{center}
```

Q: How many slides does it take until we get to a joke that is actually funny?

Lists

```
How do you catch a blue elephant?
\begin } \{ \text { itemize\} }
\item With a blue elephant net, of course.
\item But it better be an awfully big net.
\end } \{ \text { itemize } \}
```

How do you catch a blue elephant?

- Use a blue elephant net, of course.
- But it better be an awfully big net.

Numbered lists

How do you catch a red elephant?
\begin \{enumerate\} }
- Hold his nose until he turns blue.
- Then use a blue elephant net.
\end \{enumerate\} }

How do you catch a red elephant?

1. Hold his nose until he turns blue.
2. Then use a blue elephant net.

Multi-line equations

$$
\begin{aligned}
& \text { \begin } \{ \operatorname { a l i g n } * \} } \\
{(x-y)(x+y) \quad \&=x^{\wedge} 2-y^{\wedge} 2 \backslash \backslash} \\
{\quad \&=x^{\wedge} 2-9+9-y^{\wedge} 2 \backslash \backslash} \\
{\&=(x-3)(x+3)+(3-y)(3+y)} \\
{\text { \end\{align } * \} }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
(x-y)(x+y) & =x^{2}-y^{2} \\
& =x^{2}-9+9-y^{2} \\
& =(x-3)(x+3)+(3-y)(3+y)
\end{aligned}
$$

Equations with justifications

```
\begin{align*}
f(n) &= f(n-1) + n \tag{by defn of $f$}\\
    &= (n-1)n/2 + n \tag{by inductive hyp}\\
    &= n(n+1)/2 \tag{simple algebra}\\
\end{align*}
```

$$
\begin{aligned}
f(n) & =f(n-1)+n \\
& =(n-1) n / 2+n \\
& =n(n+1) / 2
\end{aligned}
$$

(by defn of f)
(by inductive hyp)
(simple algebra)

Theorems and proofs

```
\begin{theorem} A ham sandwich is better
than good sex. \end{theorem}
\begin{proof} A ham sandwich is better
than nothing. Also, nothing is better
than good sex. The result follows by
transitivity. \end{proof}
```

Theorem 1. A ham sandwich is better than good sex.

Proof. A ham sandwich is better than nothing. Also, nothing is better than good sex. The result follows by transitivity.

Tables

\begin } \{ tabular \{ | c | c | | c | \} $\\
{\text { \hline }} \\
{\$ P \$ \& \$ Q \$ \& \$ \text { \lor } Q \$ \backslash \backslash} \\
{\text { \hline }} \\
{T \& T \& T \backslash \backslash} \\
{T \& F \& T \backslash \backslash} \\
{F \& T \& T \backslash \backslash} \\
{F \& F \& F \backslash \backslash} \\
{\text { \hline }} \\
{\text { \end\{tabular\} } }\end{array}$

P	Q	$P \vee Q$
T	T	T
T	F	T
F	T	T
F	F	F

Pitfalls

Beware: Some characters are special, and can't be used from within text mode. This includes $\backslash \% \$ \# \& _\{ \}<>\sim^{\sim}$.

Many of them can be produced by prepending a backslash. For instance, 55% is produced by typing " $55 \backslash \circ$ ", and $\{1,2,3\}$ by " $\backslash\{1,2,3 \backslash\}$ ".

Error messages

$$
\text { Since } x^{\wedge} 2=1 \$ \text {, we know } \$ x=1 \$ \text { or } \$ x=-1 \$
$$

This is TeX, Version 3.14159 (Web2C 7.3.1)
! Missing \$ inserted.
<inserted text>
\$
1.25 Since x^

$$
2=1 \$ \text {, we know } \$ x=1 \$ \text { or } \$ x=-1 \$ \text {. }
$$

Type "h" for help, then "x" to exit. Next, go look at line 25 of the source document. $\operatorname{LA} T_{E} X$ is telling you that there is a "\$" missing somewhere near there.

Summary

$\angle A T_{E} X$ is cool stuff. Give it a try.

We'll have resources posted on the web page.

And ask us if you have questions.

