
CS 70 Discrete Mathematics for CS
Spring 2005 Clancy/Wagner Notes 17

Introduction to Probability
The topic for the third and final major portion of the course is Probability. We will aim to make sense of
statements such as the following:

1. “There is a 30% chance of a magnitude 8 earthquake in Northern California before 2030.”

2. “The average time between system failures is about three days.”

3. “The chance of getting a flush in a five-card poker hand is about 2 in 1000.”

4. “In this load-balancing scheme, the probability that any processor has to deal with more than twelve
requests for service is negligible.”

Implicit in all such statements is the notion of an underlying probability space. This may be the result of
some model we build of the real world (as in 1 and 2 above), or of a random experiment that we have
ourselves constructed (as in 3 and 4 above). None of these statements makes sense unless we specify the
probability space we are talking about: for this reason, statements like 1 (which are typically made without
this context) are almost content-free.

Probability spaces
Every probability space is based on a random experiment, such as rolling a die, shuffling a deck of cards,
picking a number, assigning jobs to processors, running a system etc. Rather than attempt to define “experi-
ment” directly, we shall define it by its set of possible outcomes, which we call a “sample space.” Note that
all outcomes must be disjoint, and they must cover all possibilities.

Definition 17.1 (sample space): The sample space of an experiment is the set of all possible outcomes. An
outcome is often called a sample point or atomic event.

Definition 17.2 (probability space): A probability space is a sample space Ω , together with a probability
Pr[ω] for each sample point ω , such that

• 0 ≤ Pr[ω] ≤ 1 for all ω ∈ Ω .

• ∑ω∈Ω Pr[ω] = 1, i.e., the sum of the probabilities of all outcomes is 1.

[Strictly speaking, what we have defined above is a restricted set of probability spaces known as discrete
spaces: this means that the set of sample points is either finite or countably infinite (such as the natural
numbers, or the integers, or the rationals, but not the real numbers). Later, we will talk a little about
continuous sample spaces, but for now we assume everything is discrete.]
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Here are some examples of (discrete) probability spaces:

1. Flip a fair coin. Here Ω = {H,T}, and Pr[H] = Pr[T ] = 1
2 .

2. Flip a fair coin three times. Here Ω = {(t1, t2, t3) : ti ∈ {H,T}}, where ti gives the outcome of the
ith toss. Thus Ω consists of 23 = 8 points, each with equal probability 1

8 . More generally, if we flip
the coin n times, we get a sample space of size 2n (corresponding to all words of length n over the
alphabet {H,T}), each point having probability 1

2n .

3. Flip a biased coin three times. Suppose the bias is two-to-one in favor of Heads, i.e., it comes up Heads
with probability 2

3 and Tails with probability 1
3 . The sample space here is exactly the same as in the

previous example. However, the probabilities are different. For example, Pr[HHH] = 2
3 ×

2
3 ×

2
3 = 8

27 ,
while Pr[T HH] = 1

3 ×
2
3 ×

2
3 = 4

27 . [Note: We have cheerfully multiplied probabilities here; we’ll
explain why this is OK later. It is not always OK!] More generally, if we flip a biased coin with Heads
probability p (and Tails probability 1− p) n times, the probability of a given sequence is pr(1− p)n−r,
where r is the number of H’s in the sequence. Biased coin-tossing sequences show up in many
contexts: for example, they might model the behavior of n trials of a faulty system, which fails each
time with probability p.

4. Roll two dice (one red, one blue). Then Ω = {(i, j) : 1 ≤ i, j ≤ 6}. Each of the 36 outcomes has equal
probability, 1

36 .

5. Roll two indistinguishable dice (i.e., both blue). Here Ω = {(i, j) : 1 ≤ i ≤ j ≤ 6}. There are 21
outcomes (why?); those of the form (i, i) have probability 1

36 , and the rest have probability 2
36 = 1

18 .
[How did we derive these probabilities?] When the dice are indistinguishable, we are forced to use
this sample space. We might also use it, for example, when modeling a game of backgammon, even
when the two dice are distinguishable: for we are only interested in the two numbers that come up,
not in their order.

6. Card shuffling. Shuffle a deck of cards. Here Ω consists of the 52! permutations of the deck, each
with equal probability 1

52! . [Note that we’re really talking about an idealized mathematical model of
shuffling here; in real life, there will always be a bit of bias in our shuffling. However, the mathemat-
ical model is close enough to be useful.]

7. Poker hands. Shuffle a deck of cards, and then deal a poker hand. Here Ω consists of all possible
five-card hands, each with equal probability (because the deck is assumed to be randomly shuffled).
The number of such hands is

(52
5

)

, i.e., the number of ways of choosing five cards from the deck
of 52 (without worrying about the order).1 Recall that

(n
k

)

= n!
k!(n−k)! . Consequently,

(52
5

)

= 52!
5!47! =

52×51×50×49×48
5×4×3×2×1 = 2598960. Such experiments, in which some number of distinct elements are drawn

from a set of size n, are usually known as “sampling without replacement.”

8. Prize draws. n contestants enter a prize draw; three distinct winners are picked at random, in order
(first, second, third). Here Ω consists of all triples of the form (i, j,k), where i, j,k ∈ {1, . . . ,n} and
i, j,k are distinct. Each sample point has equal probability. The number of sample points, |Ω |, is
equal to the number of ways of picking three elements, in order, out of a set of size n: this was
denoted P(n,3) in Lecture Notes 9, where we also saw that P(n,k) = n!

(n−k)! . So we have |Ω | =
n!

(n−3)! = n(n−1)(n−2). This is another example of sampling without replacement, except that in this
case the order of the chosen elements is significant.

1The notation
(n

k

)

is pronounced “n choose k”. Some writers use the alternative notation C(n,k), which is entirely equivalent.
In either case, it is usually pronounced “n choose k.”
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9. Balls and bins. Throw 20 (distinguishable) balls into 10 (distinguishable) bins, so that each ball is
equally likely to land in any bin, regardless of what happens to the other balls. Here Ω = {(b1,b2, . . . ,b20) :
1 ≤ bi ≤ 10}; the component bi denotes the bin in which ball i lands. There are 1020 possible out-
comes (why?), each with probability 1

1020 . More generally, if we throw m balls into n bins, we have a
sample space of size nm. [Note that example 2 above is a special case of balls and bins, with m = 3
and n = 2.] This is an example of “sampling with replacement,” since the choices made by the balls
are not required to be distinct. As we shall see, balls and bins is another probability space that shows
up very often in Computer Science: for example, we can think of it as modeling a load balancing
scheme, in which each job is sent to a random processor.

10. Balls and bins with indistinguishable balls. Suppose we throw m balls into n bins, but that now the
balls are indistinguishable from one another: this means that, after throwing the balls, we see only the
number of balls that landed in each bin, but not which balls landed where. Thus each sample point is
just an n-tuple (m1,m2, . . . ,mn), in which mi is the number of balls that land in bin i: i.e., Ω consists
of all such n-tuples in which the mi are non-negative integers that sum to m. How many sample points
are there? This is equal to the number of ways of partitioning m indistinguishable items into n groups.
We can think of this as follows: write down m dots in a line (representing the items); then take n−1
vertical lines and interleave them any way you like with the dots. Any such arrangement of dots and
lines represents a unique partition as follows: reading along the line from left to right, the number of
items in the first group, m1, is the number of dots to the left of the first line. The number of items in
the second group, m2, is the number of dots between the first and second lines, and so on. It should
be clear that each partition is represented by one and only one dot-line arrangement, so the number of
partitions is equal to the number of arrangements. But the number of dot-line arrangements is easy to
compute: it is

(m+n−1
n−1

)

, because we just have to choose the positions for the n−1 lines out of the total
number of available positions m+n−1. (Think about it!)

In this sample space, the probabilities of sample points are not all equal. For example, if we have two
balls and two bins, then the arrangement (2,0) (in which both balls fall into bin 1) can happen in only
one way, whereas (1,1) can happen in two different ways (switching the two balls over gives us the
same sample point). In general, how many ways can we get the arrangement (m1,m2, . . . ,mn)? Well,
by generalizing our proof in Lecture Notes 9 for the number of ways of choosing k things from n, the
answer is m!

m1!×m2!×···×mn! . So this sample point ω should have probability Pr[ω] = 1
nm ×

m!
m1!×m2!×···×mn! .

11. The Monty Hall Problem. In the (in)famous 1960s game show “Let’s Make a Deal,” hosted by one
Monty Hall, a contestant was shown three doors; behind one of the doors was a prize, and behind the
other two were goats. The contestant picks a door (but doesn’t open it), and Monty opens one of the
other two doors, revealing a goat. The contestant is then given the option of sticking with his current
door, or switching to the other unopened one. He wins the prize if and only if his chosen door is the
correct one. The question, of course, is: Does the contestant have a better chance of winning if he
switches doors?

What is the sample space here? Well, we can describe the outcome of the game (up to the point where
the contestant makes his final decision) using a triple of the form (i, j,k), where i, j,k ∈ {1,2,3}. The
values i, j,k respectively specify the location of the prize, the initial door chosen by the contestant,
and the door opened by Monty. Note that some triples are not possible: e.g., (1,2,1) is not, because
Monty never opens the prize door. Thinking of the sample space as a tree structure, in which first i is
chosen, then j, and finally k (depending on i and j), we see that there are exactly 12 sample points.

Assigning probabilities to the sample points here requires pinning down some assumptions:

• The prize is equally likely to be behind any of the three doors.
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• Initially, the contestant is equally likely to pick any of the three doors.

• If the contestant happens to pick the prize door (so there are two possible doors for Monty to
open), Monty is equally likely to pick either one.

From this, we can assign a probability to every sample point. For example, the point (1,2,3) cor-
responds to the prize being placed behind door 1 (with probability 1

3 ), the contestant picking door 2
(with probability 1

3 ), and Monty opening door 3 (with probability 1, because he has no choice). So

Pr[(1,2,3)] = 1
3 ×

1
3 ×1 = 1

9 .

[Note: Again we are multiplying probabilities here, without proper justification!] Note that there are
six outcomes of this type, characterized by having i 6= j (and hence k must be different from both).
On the other hand, we have

Pr[(1,1,2)] = 1
3 ×

1
3 ×

1
2 = 1

18 .

And there are six outcomes of this type, having i = j. These are the only possible outcomes, so we
have completely defined our probability space. Just to check our arithmetic, we note that the sum of
the probabilities of all outcomes is (6× 1

9)+(6× 1
18) = 1.

Events
In the Monty Hall problem, we are interested in the probability that the constestant wins the prize. This is
itself not a single outcome (the contestant can win in several different ways), but a set of outcomes. This
leads us to:

Definition 17.3 (event): An event A in a sample space Ω is any subset A ⊆ Ω .

How should we define the probability of an event A? Naturally, we should just add up the probabilities of
the sample points in A.

Definition 17.4 (probability of an event): For any event A ⊆ Ω , we define the probability of A to be

Pr[A] = ∑
ω∈A

Pr[ω].

Let’s look at some examples; the number of the example refers to the probability space in our previous list.

1. Fair coin. Let A be the event “the coin comes up Heads.” Then Pr[A] = 1
2 .

2. Three fair coins. Let A be the event that all three coin tosses are the same. Then Pr[A] = Pr[HHH]+
Pr[T T T ] = 1

8 + 1
8 = 1

4 .

3. Biased coins. Let A be the same event as in the previous example. Then Pr[A] = Pr[HHH] +
Pr[T T T ] = 8

27 + 1
27 = 9

27 = 1
3 . As a second example, let B be the event that there are exactly two

Heads. We know that the probability of any outcome with two Heads (and therefore one Tail) is
( 2

3)2 × ( 1
3) = 4

27 . How many such outcomes are there? Well, there are
(3

2

)

= 3 ways of choosing the
positions of the Heads, and these choices completely specify the sequence. So Pr[B] = 3× 4

27 = 4
9 .

More generally, the probability of getting exactly r Heads from n tosses of a biased coin with Heads
probability p is

(n
r

)

pr(1− p)n−r.

4. Dice. Let A be the event that the sum of the dice is at least 10, and B the event that there is at least
one 6. Then Pr[A] = 6

36 = 1
6 , and Pr[B] = 11

36 . In this example (and in 1 and 2 above), our probability
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space is uniform, i.e., all the sample points have the same probability (which must be 1
|Ω | , where |Ω |

denotes the size of Ω ). In such circumstances, the probability of any event A is clearly just

Pr[A] =
# of sample points in A
# of sample points in Ω

=
|A|
|Ω |

.

So for uniform spaces, computing probabilities reduces to counting sample points!

6. Card shuffling. Let A be the event that the top card is an ace. Then by the above remarks

Pr[A] =
# of permutations with an ace on top

52!
.

How many permutations have an ace on top? Well, there are four choices for the ace; and once we
have chosen it and put it on top, there are exactly 51! ways to arrange the remaining 51 cards. So the
number of such permutations is 4×51!. Thus Pr[A] = 4×51!

52! = 4
52 = 1

13 .

Let B be the event that the top two cards are from the same suit. How many such permutations are
there? Well, there are four possible common suits for the top two cards, and once the suit is chosen
there are 13 ways to choose the first card and 12 ways to choose the second. The remaining 50 cards
can be arranged in 50! ways. Thus we have

Pr[B] =
4×13×12×50!

52!
=

12
51

.

7. Poker hands. What is the probability that our poker hand is a flush? [For those who are not addicted
to gambling, a flush is a hand in which all cards have the same suit, say Hearts.] To compute this
probability, we just need to figure out how many poker hands are flushes. Well, there are 13 cards
in each suit, so the number of flushes in each suit is

(13
5

)

. The total number of flushes is therefore
4×

(13
5

)

. So we have

Pr[hand is a flush] =
4×

(13
5

)

(52
5

) =
4×13!×5!×47!

5!×8!×52!
=

4×13×12×11×10×9
52×51×50×49×48

≈ 0.002.

8. Prize draws. I am one of the n contestants. Let A be the event that I win one of the three prizes.
How many sample points lie in A? Well, there are three prizes I could win; each of these leaves
two prize slots which have to be filled by choosing two contestants (in order) from the remaining
n− 1; and there are P(n− 1,2) = (n− 1)(n− 2) ways to do this. So |A| = 3(n− 1)(n− 2), and
Pr[A] = |A|

|Ω | = 3(n−1)(n−2)
n(n−1)(n−2) = 3

n .

9. Balls and bins. Let A be the event that bin 1 is empty. Again, we just need to count how many
outcomes have this property. And this is exactly the number of ways all 20 balls can fall into the
remaining nine boxes, which is 920. Hence Pr[A] = 920

1020 = ( 9
10)20 ≈ 0.12. What is the probability

that bin 1 contains at least one ball? This is easy: this event, call it Ā, is the complement of A, i.e.,
it consists of precisely those sample points that are not in A. So Pr[Ā] = 1− Pr[A] ≈ 0.88. More
generally, if we throw m balls into n bins, we have

Pr[bin 1 is empty] =

(

n−1
n

)m

=

(

1−
1
n

)m

.
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11. Monty Hall. Finally, let’s return to the Monty Hall problem. Recall that we want to investigate the
relative merits of the “sticking” strategy and the “switching” strategy. Let’s suppose the contestant
decides to switch doors. The event A we are interested in is the event that the contestant wins. Which
sample points (i, j,k) are in A? Well, since the contestant is switching doors, his initial choice j
cannot be equal to the prize door, which is i. And all outcomes of this type correspond to a win for
the contestant, because Monty must open the second non-prize door, leaving the contestant to switch
to the prize door. So A consists of all outcomes of the first type in our earlier analysis; recall that
there are six of these, each with probability 1

9 . So Pr[A] = 6
9 = 2

3 . I.e., using the switching strategy,
the contestant wins with probability 2

3 ! It should be intuitively clear (and easy to check formally —
try it!) that under the sticking strategy his probability of winning is 1

3 . (In this case, he is really just
picking a single random door.) So by switching, the contestant actually improves his odds by a huge
amount!

This is one of many examples that illustrate the importance of doing probability calculations systematically,
rather than “intuitively.” Recall the key steps in all our calculations:

• What is the sample space (i.e., the experiment and its set of possible outcomes)?

• What is the probability of each outcome (sample point)?

• What is the event we are interested in (i.e., which subset of the sample space)?

• Finally, compute the probability of the event by adding up the probabilities of the sample points inside
it.

Whenever you meet a probability problem, you should always go back to these basics to avoid potential
pitfalls. Even experienced researchers make mistakes when they forget to do this — witness many erroneous
“proofs”, submitted by mathematicians to newspapers at the time, of the fact that the switching strategy in
the Monty Hall problem does not improve the odds.
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