(More) Secret Sharing, Polynomials, and Error Correcting Codes

Motivation:
Recall we’re finding ways to share a secret S among n people such that any k of them can reconstruct S, but any coalition of k – 1 of them have absolutely no information about what S is.

Galois Fields:
Recall that the Galois Field \(GF_q \) is the set of numbers \(\forall x \in \mathbb{Z} : \{0 \leq z \leq q \} \) together with the operations \(\cdot \) (mod q) and \(+ \) (mod q). In this lecture, we will work with polynomials over \(GF_q \).

Definition: \(r \) is a root of a polynomial \(\iff P(r) = 0 \)

Recall from the previous lecture:

Theorem: Over any field \(F \), any degree n polynomial has at most n roots. (The proof was given by induction over n.)

Theorem: Given a field with points \((a_1, b_1), \ldots, (a_n, b_n) \), there is a unique polynomial \(P \) of degree \(n-1 \) such that: \(P(x) : \forall i P(a_i) = b_i \)

Example: Consider a polynomial of degree 2 over \(GF_2 \), where:

\[
P(1) = 2 \quad (2) = 4 \quad P(3) = 2
\]

\[
\Delta_1(x) = \frac{x-2}{1-2} : \frac{x-3}{1-3} \quad \Delta_2(x) = \frac{x-1}{2-1} : \frac{x-3}{2-3} \quad \Delta_3(x) = \frac{x-1}{3-1} : \frac{x-2}{3-2}
\]

\[
P(x) = 2\Delta_1(x) + 4\Delta_2(x) + 2\Delta_3(x)
\]

\[
\Delta_1(x) = \frac{(x-2)(x-3)}{2}
\]

\[
2^{-1} \pmod{7} = 2 \cdot 4 \pmod{7} \equiv \pmod{7}
\]

Properties of Polynomials:

- A polynomial of degree \(n \) has \(\leq n \) roots.
- \(n \) points define a unique polynomial of degree \(n - 1 \).

Exercise: Consider \(n \) points in a finite field \(GF_q \). How many polynomials of degree \(n \) pass through these points? 1, 2, \(q, n, \infty \)???
Points

How many degree \(n - 1 \) polynomials.

\[
\begin{array}{c|c}
 n & 1 \\
n - 1 & q \\
\end{array}
\]

This is because there are exactly \(q \) choices for the value of the polynomial at the \(n \)-th point. For each such choice, there is exactly one polynomial of degree \(n - 1 \).

\[
\begin{array}{c|c}
 n - k & q^k \\
\end{array}
\]

Back to Secret Sharing:

Given \(n \) people, how do we construct a system where:

- Any subset of \(k \) out of \(n \) can reconstruct \(s \), the secret.
- Any subset of \(k - 1 \) out of \(n \) knows nothing about \(s \).

Let \(q \) be a prime larger than \(n \) and \(s \). We will work over \(GF_q \). Let \(P \) be a random polynomial of degree \(k - 1 \) such that \(P(0) = s \). We can pick \(P \) either by picking its coefficients (other than the constant term, which is \(s \)) to be random elements of \(GF_q \), or by picking its values at \(1, \ldots, k - 1 \) to be random elements of \(GF_q \):

\[
P(1) = r_1 \quad P(2) = r_2 \quad \ldots \quad P(k-1) = r_{k-1}
\]

Both methods result in a random polynomial from the same set.

Now each person \(i \), for \(1 \leq i \leq n \), gets \(P(i) \).

- Any \(k \) players know \(P(x) \) at \(k \) points therefore it is possible to interpolate and uncover the secret polynomial \(P(x) \), evaluate it at \(P(0) = s \) revealing the secret code \(s \) hidden by the polynomial.

- Any \(k - 1 \) players have no information about \(s \), since their \(k - 1 \) values are consistent with any of the \(q \) possibilities for \(P(0) \) (there is a unique polynomial of degree \(k - 1 \) that goes through the \(k - 1 \) given points and this chosen value at 0). Therefore they have no information about the secret \(s \).

Why must the modulus of the field be prime?

Consider:

\[
(Z_{15}, +, \cdot) \quad x^2 = 1 \quad (mod \ 15)
\]

1, 4, 11, 14 are roots of the polynomial! More than 2 values is not good. \(q \), the modulus of the field (in this case \(q = 15 \), must be prime.