Secret Sharing, Finite Groups and Fields, and Polynomials

Motivation:
Suppose we have a nuclear bomb code: S, that is broken down into 6 pieces S_1, S_2, \ldots, S_6, given to 6 people. Each person has part of the code.

We want break the code S into pieces such that any 5 people can reconstruct the original code S, but 4 people cannot reconstruct any information about S (not even one bit of S).

In general we’re trying to devise a scheme where there are n people that share part of a “secret”, and that if k people combine their parts of the secret, they will arrive at the original secret. However we want the safeguard such that if $k-1$ people combine their parts of the secret, they will know absolutely nothing about the secret.

Groups:
We’ll need to take with a little detour through the basics of abstract algebra. You will be introduced to 2 “algebraic structures” groups, and fields.

A group is a non-empty set $X = \{a, b, c, \ldots\}$ together with a binary operation $\cdot : X \times X \rightarrow X$, such that the following are satisfied:

1. Closure: $\forall a, b \in X \ a \cdot b \in X$
2. Associative Law: $\forall a, b, c \in X \ a \cdot (b \cdot c) = (a \cdot b) \cdot c$
3. Identity: $\exists e \in X : \forall a \in X \ e \cdot a = a \cdot e = a$
4. Inverse: $\forall a \in X \ \exists a^{-1} \in X : a \cdot a^{-1} = a^{-1} \cdot a = e$

A group is called a commutative group or Abelian group if it satisfies the condition that $\forall a, b \in X \ a \cdot b = b \cdot a$.

Example:
Consider the integers \mathbb{Z} with the binary operation \cdot. This is a group, with identity 0, and the inverse of $i \in \mathbb{Z}$ is $-i$.

Similarly, the real numbers \mathbb{R} with the binary operation \cdot forms a group. The identity is 0, and the inverse of $x \in \mathbb{R}$ is $-x$.

Both of these groups are commutative.

Example:
Consider the group \mathbb{Z}_n which is the set of integers $(\mod n)$ together with the operator additon $(\mod n)$.

One can see this group satisfies:

1. Closure
2. Associative: $a + ((b + c) \mod n)(\mod n) \equiv (a + b \mod n) + c \mod n$
3. Identity 0
4. Inverse $x^{-1} = n - x$

Is this group commutative?

$$(a + b) \mod n \equiv (b + a) \mod n$$

Yes!

Example:

Consider the group: $\mathbb{Z}_n - \{0\} = 1, 2, \ldots, n - 1$ together with the operator $\cdot (\mod n)$.

If n is prime, this group satisfies:

1. Closure $a \neq 0(\mod n) \land b \neq 0(\mod n) \land a \cdot b \neq 0(\mod n)$
2. Associative
3. Identity 1 (n is prime!)
4. Inverse $a \neq 0(\mod n)$, n (prime!), $gcd(a, n) = 1 \rightarrow a^{-1}$ exists.

Now, is this group commutative (n is still prime)? In other words can we show the following?

$a \cdot b(\mod n) = b \cdot a(\mod n)$ Yes!

But what happens if n is not prime?

(1) Our operation over the set $\mathbb{Z} - \{0\}$ is not closed. Consider the following:

$a \neq 0(\mod n) \land b \neq 0(\mod n)$

$a \cdot b(\mod n)$

$n = 6$

$a \equiv 2(\mod 6)$

$b \equiv 3(\mod 6)$

$a \cdot b \equiv 0(\mod 6)$

$6 \nmid 2$

$6 \nmid 3$ but

$6 \nmid 2 \cdot 3$

(4) We are not guaranteed an inverse for each member of the set $\mathbb{Z} - \{0\}$ as $\exists a : gcd(a, n) \neq 1$

Fields: A field $(X, +, \cdot)$ is a set X together with 2 binary operations. A field must satisfy:

1. $(X, +)$ forms a commutative group, 0 is the identity.
2. $(X - \{0\}, \cdot)$ forms a commutative group, 1 the identity.
3. Distributive law: $a \cdot (b + c) = a \cdot b + a \cdot c$

Examples:
(\mathbb{Q}, +, \cdot)\) Rationals
(\mathbb{Z}, +, \cdot)\) Integers, NOT a field! There is NO inverse \(a^{-1} \in \mathbb{Z}\) for multiplication.
(\mathbb{R}, +, \cdot)\) Reals
(\mathbb{C}, +, \cdot)\) Complex

However, these are infinite. How do we get to a finite field?

Finite Fields: \((\mathbb{Z}_p, +, \cdot \mod p)\) where \(p\) is prime is a field. The fact that \((\mathbb{Z}_p, +, \cdot \mod p)\) are commutative groups was shown in the examples above, and the distributive law is easy to check.

The finite field \((\mathbb{Z}_p, +, \cdot \mod p)\) is also called a Galois Field, and denoted \(GF_p\), in honor of Evariste Galois (1811 - 32).

Fields are defined so that most of the standard properties we count on while adding and multiplying real numbers also hold over any field. For example the cancelation law:

\(ax = ay\) and \(a \neq 0\) implies that \(x = y\). We can cancel \(a\) from both sides because \(a^{-1}\) exists and so multiplying both sides by \(a^{-1}\), we get \(x = y\).

Since we can talk about multiplication and addition over a field, it makes sense to define polynomials over a field.

Consider a polynomial of degree \(d\):

\[P(x) = c_0 + c_1x + c_2x^2 + \cdots + c_dx^d\]
over a field \(F\) where each \(c_i \in F\)

Recall that \(r \in F\) is a root of \(P(x)\) iff \(P(r) = 0\).

Let us prove that several familiar properties of polynomials continue to hold for polynomials over an arbitrary field \(F\):

1. A linear polynomial has at most 1 root, namely that of \(x \in F\): \(P(x) = 0\)

 Proof: \(P(x) = ax + b\) both \(a\) and \(b\) cannot be 0.

 Case \(a \neq 0\):
 \[ax + b = 0 \iff ax = -b\]
 \[\iff x = -b/a\]
 Case \(a = 0\):
 \[ax + b = 0 \iff b = 0\] Which is a contradiction!

2. Distinct linear polynomials (lines) agree (intersect) in at most one point:

 \[P_1(x) = a_1x + b_1\]
 \[P_2(x) = a_2x + b_2\]
 \[0 = P_1(x) - P_2 = a_1x + b_1 - (a_2x + b_2) = (a_1 - a_2)x + (b_1 - b_2)\]

Example:

Consider the two linear polynomials over \(GF_3\)

\[P(x) = 2x + 3\]
\[P'(x) = 3x + 1\]

It is instructive to plot these two “lines” (they don’t look anything like lines in the plane), and to see that they intersect in the point \((2, 2)\).
Theorem: Over any field \(F \), any degree \(n \) polynomial has at most \(n \) roots.

The proof is by induction on \(n \), and is part of the next homework.

Polynomial Interpolation:

- 2 points determine a line of degree 1
- 3 points determine a unique degree 2 polynomial
-
- \(\vdots \)
- \(n \) points determine a unique degree \(n-1 \) polynomial

Theorem: Consider \(F \), a field with points \((a_1, b_1), \ldots, (a_n, b_n)\). There is a unique polynomial \(P \) of degree \(n-1 \) such that: \(P(a_i) = b_i \) for \(i = 1 \) to \(n \).

Proof: We shall show that there are polynomials, \(\Delta_i(x) \), of degree \(n-1 \), such that: \(\Delta_i(a_i) = 1 \), and for \(j \neq i \) \(\Delta_j(a_j) = 0 \). But then the polynomial \(P(x) = b_1\Delta_1(x) + b_2\Delta_2(x) + \cdots + b_n\Delta_n(x) \) has degree \(n-1 \), and satisfies the condition that \(P(a_i) = b_i \) for \(i = 1 \) to \(n \).

\[
\Delta_i(x) = \prod_{j\neq i} \frac{x-a_j}{a_i-a_j}
\]

Clearly the degree of this polynomial is \(n-1 \), and it is easy to check by direct substitution that \(\Delta(a_i) = 1 \), and for \(j \neq i \) \(\Delta_j(a_j) = 0 \).