Due Thursday October 9

1. (5 pts.) Any questions?
 Is there anything you’d like to see explained better in lecture or discussion sections?

2. (15 pts.) Modulo arithmetic
 Solve the following equations for x and y modulo the indicated modulus, or prove that no solution exists. Show your work.
 (a) $8x \equiv 1 \pmod{13}$.
 (b) $3x + 23 \equiv 24 \pmod{51}$.
 (c) $3x + 25 \equiv 16 \pmod{31}$.
 (d) The system of simultaneous equations $3x + 2y \equiv 1 \pmod{7}$ and $2x + y \equiv 4 \pmod{7}$.

3. (20 pts.) Binary gcd
 (a) Prove that the following statements are true for all $m, n \in \mathbb{N}$.

 If m is even and n is even, \quad $\gcd(m, n) = 2 \gcd(m/2, n/2)$.

 If m is even and n is odd, \quad $\gcd(m, n) = \gcd(m/2, n)$.

 If m, n are both odd and $m \geq n$, \quad $\gcd(m, n) = \gcd((m-n)/2, n)$.

 (b) Give an algorithm that computes $\gcd(m, n)$ using at most $O(lg m + lg n)$ subtractions, halvings, doublings, and odd/even tests.

4. (20 pts.) Big-O notation
 The purpose of this problem is to teach you Big-O notation in a careful way. First, study the following.
 (If you’d like additional reading on this subject, you may refer to Rosen, Chapter 2.2.)

 Formally: If $f(n), g(n)$ are two non-negative functions of a single integer variable, the statement $f(n) \in O(g(n))$ means that
 $$\exists N_0 \in \mathbb{N}. \ \exists C \in \mathbb{N}. \ \forall x \in \mathbb{N}. \ x \geq N_0 \implies f(x) \leq C \cdot g(x).$$
 In other words, $O(g(n))$ is the set of functions $\{f_i(n) : \exists N_0 \in \mathbb{N}. \ \exists C \in \mathbb{N}. \ \forall x \in \mathbb{N}. \ x \geq N_0 \implies f_i(x) \leq C \cdot g(x)\}$. This is the definition of Big-O notation.

 Informally: $f(n) \in O(g(n))$ means, roughly, that $f(n)$ grows “no faster than” $g(n)$ (except possibly for a constant factor), as n gets large. For instance, $n^2 \in O(n^2)$, $n(n+1)/2 \in O(n^2)$, and $10000n^2 \in O(n^2)$, because these functions all grow at asymptotically the same rate (ignoring constant factors). Also, $n^2 \in O(n^3)$, because n^2 grows more slowly than n^3 does, as n gets large.

 Some basic facts: If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$, then $f(n) \in O(h(n))$. If $f(n) \in O(g(n))$ and $f'(n) \in O(g'(n))$, then $f(n) + f'(n) \in O(g(n) + g'(n))$. If $f(n) \in O(g(n))$ and $f'(n) \in O(g'(n))$, then $f(n) \times f'(n) \in O(g(n) \times g'(n))$.

Common notation: Instead of writing \(f(n) \in O(g(n)) \), almost everyone instead writes \(f(n) = O(g(n)) \). Strictly speaking, this is a sloppy abuse of notation, but this practice is widespread; you are guaranteed to see it throughout your studies of computer science, so be prepared. Also, we often write something like \(n^2 \) as a shorthand for the function \(f(n) = n^2 \), just to make our life easier.

Now, with that background established, do the following problems:

(a) Prove that \(n^2 + 2003 \in O(n^3) \).

Hint: One possible approach is to give an example of constants \(N_0, C \) that satisfy the definition.

(b) Prove that \(100n^2 \log n \in O(n^3) \).

(c) True or false: There exists \(e \in \mathbb{N} \) such that \(2^e \in O(n^e) \). (You do not need to justify your answer.)

(d) Critique the following argument. Is the reasoning valid? If not, why not?

We have \(n^2 = O(n^4) \).
Also, we have \(n^2 = O(n^3) \).
By transitivity, it follows that \(O(n^4) = O(n^3) \).
This means that \(n^4 = O(n^3) \).

5. (20 pts.) **Program checking:** “Casting out \(p \)'s”

You’ve bought a fast integer calculation library from Goofle, Inc. (“featuring patented addition technology!”), and holy cow, their code is fast!

However, you’re a little suspicious about whether Goofle’s code is always returning the correct answer. They don’t supply the source code to their library\(^1\), so you have no way to check their algorithms directly.

Instead, you decide to sanity-check every result you get back from their library at run-time to give yourself a good chance of detecting any erroneous results. To this end, you’re going to write a wrapper (e.g., `CheckedAdd()`) around their API (e.g., `GoofleAdd()`) that checks Goofle’s result—hopefully without incurring too much performance penalty.

(a) As a warm-up, prove that, for every positive \(D \in \mathbb{N} \), the number of distinct prime factors of \(D \) is at most \(\log_2 D \).

(b) Now, back to writing `CheckedAdd()`. Let’s suppose you use the following algorithm:

\[
\text{CheckedAdd}(m,n): \\
\quad \text{// Given } m,n \in \mathbb{N}, \text{ computes } m + n \text{ using Goofle’s library and checks for errors.} \\
\quad \text{1. Set } k := \text{GoofleAdd}(m,n). \\
\quad \text{2. Pick a random 64-bit prime } p, \text{ i.e., choose uniformly at random among all primes satisfying } 2^{63} < p < 2^{64}. \\
\quad \text{3. Compute } m' := m \mod p, \text{ } n' := n \mod p, \text{ } k' := k \mod p. \\
\quad \text{4. If } k' \neq m' + n' \mod p, \text{ then signal an error and abort.} \\
\quad \text{5. Return } k.
\]

Assume that Steps 2–4 can be performed using a trusted library that is known to work correctly. Prove that if `GoofleAdd()` returns the wrong result, then with probability at least \(1 - \frac{\log_2 D}{2^7} \), an error will be signaled, where \(D = \max(k,m+n) \).

\(^1\)Bad dog, no bone for them.
6. (25 pts.) Polynomial interpolation

(a) Prove the following: If \(p \) is a prime and \(y_1, \ldots, y_n \in \mathbb{N} \) are all different from 0 modulo \(p \), then \(y_1 \times \cdots \times y_n \) is also different from 0 modulo \(p \).

(b) Prove the following: Given a prime \(p \) and two integers \(a, b \), it is always possible to find a polynomial \(f(x) \) of degree at most one such that \(f(0) \equiv a \) (mod \(p \)) and \(f(1) \equiv b \) (mod \(p \)).

(c) You are given a prime \(p \) and a positive number \(n < p \). Show how to find a polynomial \(f(x) \) of degree at most \(n \) satisfying \(f(0) \equiv f(1) \equiv \cdots \equiv f(n-1) \equiv 0 \) (mod \(p \)) and \(f(n) \equiv 1 \) (mod \(p \)). In other words, the polynomial \(f \) should be congruent to zero at the points \(x = 0, \ldots, n-1 \); at \(x = n \) the polynomial should be 1 mod \(p \).

\[\text{Hint: Consider } F(x) = (x - 0)(x - 1)(x - 2)\cdots(x - (n - 1)); \text{ what can you say about it?} \]

(d) You are given \(p \) and \(n \) as before, but now you are also given an index \(j \) with \(0 \leq j \leq n \). Show how to find a polynomial \(g_j(x) \) of degree at most \(n \) satisfying

\[g_j(i) \equiv \begin{cases} 0 & \text{if } i \neq j \\ 1 & \text{if } i = j \end{cases} \quad \text{for each } i = 0, 1, \ldots, n. \]

In other words, the polynomial \(g_j \) should be congruent to zero at the points \(x = 0, \ldots, n \), except that at \(x = j \) it should be congruent to 1 mod \(p \).

(e) You are given a prime \(p \), a number \(n \) with \(0 < n < p \), and a sequence of values \(a_0, a_1, \ldots, a_n \) (mod \(p \)). Describe an efficient algorithm to find a polynomial \(h(x) \) of degree at most \(n \) satisfying \(h(0) \equiv a_0 \) (mod \(p \)), \(h(1) \equiv a_1 \) (mod \(p \)), \ldots, \(h(n) \equiv a_n \) (mod \(p \)).

\[\text{Hint: What can you say about the polynomial } 3g_0(x) + 7g_1(x), \text{ where } g_0(x), g_1(x) \text{ are as defined in part (d)? Does this give you any ideas?} \]