CS 276: Cryptography Lecture 9
Professor David Wagner February 14, 2006

Lecture 9

Message Authentication

So far, we have only considered encryption of messages, ensuring that the information in a
message remains secret from eavesdroppers. Instead of or in addition to encryption, we may
care that the receiver of a message knows that the message came from a trusted sender, that he
or she can verify the authenticity of the message. The standard scenario we are considering is of
Alice sending messages to Bob through some channel, in which an adversary Mallet can interrupt
the flow of messages, intercepting messages that Alice is sending, and either forwarding them on
to Bob as is, altering them in some way, creating new messages, or severing the channel and not
delivering messages at all. The picture for a single message is below. Alice puts her message m
through some keyed function S intended to facilitate the preservation of message integrity, and
this processed message c is sent over the channel, where Mallet may or may not tamper with it.
The (possibly modified) message Bob receives is ¢/, and Bob pases this through a verification
function Ry to produce either a plaintext m’ or an error message L indicating tampering. We
still refer to ¢ and ¢ as “ciphertexts”, even though they are not necessarily encrypted.

] I

m C C m
— | S, | ——— = ———=— | R | —>

Alice Mallet Bob

If Alice is sending a sequence of messages, we would of course have
/ / !/ !/
mi,Mga,... —C1,C2,... > C1,Coy... — MM, Mo,...

The are two notions of message integrity that we’ll discuss.

Connection Semantics

Here we are interested in having an overall secure channel that is for the most part tamper-proof,
short of severing the entire channel.

(1) Correctness: We would like Bob to obtain after verification the same messages that Alice
sent, and in the same order. That is, we would like

(m1,ma,...,my) = (my,mh,...,ml)

(2) Security: We would like it if Mallet is unable to forge messages, so that her best bet
is simply to sever the channel so that no further messages can be transmitted. In other
words, we would like the received messages (m}, mj, . ..) to be a prefix of the sent messages
(my, ma,...,my).

A more realistic, practical notion is the following:

Packet Semantics

(1) Correctness: We will let the verification method R be stateless and deterministic, though
S can be stateful and randomized. We would then like

Rk(Sk (m)) =m, Vm, k.

Lecture 9 2

(2) Security of Plaintext Integrity: We would like Bob to only obtain actual messages that
Alice sent, or perhaps error messages indicating tampering. In other words, we would like
the received messages to be a subset of the sent messages:

{ml,mb, ...} C{mi,ma,..., L}
This particular notion of security is known as INT-PTXT (for “integrity of plaintext”).

(2") Security of Ciphertext Integrity: As an alternative notion of security, we would like the
verification method to throw an error flag on any ciphertext that didn’t originate from
Alice, so that Mallet is unable to forge a ciphertext of her own that Bob is tricked into
accepting. Specifically, we would like

{c}: Rg(c}) #1} C{c1,c0,...}

Similarly, this notion of security is known as INT-CTXT.

Formalization of Security Notions

We naturally would like to formalize these security notions in terms of adversary advantage so
that we can determine computational security bounds. For the plaintext notion, we will define

Advint—ptxtA _ Pl“[k ﬁ K;ASk7Rk forgeS]

Here we say that A forges if A queries Ry and gets a response m #_1 that wasn’t previously
queried to Sk. In other words, suppose {(x1,41), (22,92),...} are queries to S (meaning that
y; is the result of applying Sy to plaintext xz;), and {(yi,z}), (v4,25),...} are queries to Ry
(meaning that z is the result of applying Ry, to ciphertext y). Then A forges if 3 with z} #L
and Vj x} # x;.

We say that (S, R) is (£, gs, ¢, €)-INT-PTXT secure if Adv™P™ A < ¢ for all adversaries A
running in time less than ¢, making at most g, queries to S and at most g, queries to R. We
can similarly construct a formal notion of security for INT-CTXT by changing what it means to
forge: using the same sequence of queries to Sx and Ry above, we say that A forges if 3¢ with

zj # 1L and Vj y; # y;.

Observation: INT-CTXT — INT-PTXT

This is trivial to show, for if a scheme can detect inauthentic ciphertexts, there’s no way to
possibly transmit to Bob a forged message. The converse, however, is not true. The adversary
can change a ciphertext in such a way that the original message can still be intact. For example,
if S simply appends a 0 bit to the front of messages, and R just throws away that first bit, the
adversary can flip the first bit, and the message will still be intact.

Encryption Does Not Provide Integrity

We might think encrypting our messages with a secure encryption scheme will take care of the
whole authentication problem. Unfortunately, it does not. In fact, we can demonstrate this with
the one-time pad—even though it is an extremely secure encryption method, it does nothing for
authentication.

If the adversary intercepts ¢ and passes ¢ @ ...01 as ¢/, then we already haven’t preserved
INT-PTXT, because when Bob decrypts by doing ¢’ @ k, the message he recovers has a flipped
bit. Bob thus has no way to know whether to trust the ciphertext he receives. We could try to
patch up this scheme, say using a CRC checksum. Using CRC is very bad, however, since it’s a
linear function, and is easy to fool. We can, however, try a related but better idea.

Lecture 9 3

k k

| l

m—»@—»c —=—| Adversary ——c’—>@—>m

MACs

We could design our function F' that given a plaintext message m, returns a tag Fj(m) that
we can append to our message. Then Alice sends (m, F(m)) over the channel. Bob receives
(m,t) where the tag ¢t may or may not be the original tag. The method on the receiving end
should return the message m if the tag is authentic, that is, if ¢ = Fj(m), or return the error
L otherwise. We can define the receiving method in terms of a verification prodedure V' that
returns 1 if ¢ = Fi(m) and 0 otherwise. Such a scheme is called a Message Authentication
Code, or MAC. The picture of this scheme is below.

(m,F (m)) (m,t) m ifFE(m)=t
m—> — " I {J_ otll'(]erwise

We can choose to define security notions for a MAC if the scheme satisifies INT-PTXT or
INT-CTXT. For the INT-PTXT notion, we can define the advantage of an adversary against
the MAC as

AdvMCA = Pr[AFe Ve forges]

where we say that A forges if A makes a query (m,t) such that Vi (m,t) = 1 and m was not
previously queried to Fj. In other words, if the adversary can create a valid tag for his or her
own message based on learning information from queries to oracles for Fj, and Vj. We say that
a scheme is a (¢, ¢s, qv, €)-MAC if AdvA < € for all adversaries A running in time less than ¢ and
making at most g5 queries to Fj and at most ¢, queries to Vj.

We define INT-CTXT security for a MAC in exactly the same way, except that we change
the notion of forgery. Under this notion, we say that A forges if it makes a query (m,t) such
that Vi(m,t) = 1 and there was no prior query with input m and output ¢. That is, this is a
more difficult notion of forgery than before, since passing an authentic message with a new tag
will be detected.

Do Such Schemes Exist?

These notions of security are all very nice, but they don’t do us much good if we can’t construct
a scheme in practice that meets these requirements. However, we can in fact do so, and we’ve
already seen all the tools we need.

Let Fj be a random function R that is known only to Alice and Bob. Say

R:{0,1}* — {0,1}%.

Suppose that Alice is sending a sequence of messagse my, mo, ... with tags R(m1), R(ma),...
appended to them. Mallet attempts to pass off a forgery (m',t'). What is the probability that
she succeeds? It’s the probability that her chosen tag t’ is the appropriate tag for her message m/,
and the only information she has access to is that each message m; that Alice sent corresponds
to a tag R(m;). But R is a random function, so this is no help at all.

Pr[R(m/) = t'|R(m;) = t;] = Pr[Mallet forges| = (if m' is new, i.e. m' # my,ma,...)

280

Lecture 9 4

So R provides us with a (00, gs, 1, %)-MAC. Here we only allowed Mallet one attempt at pushing
one of her messages through V', which won’t work in practice, but this is not an issue, as the
following lemma shows.

Lemma. If F is a (t,qs,1,€)-MAC, then it is a (t,qs, qv, gue)-MAC.

Proof. Let A make ¢, verification queries (to V). Because we’re using a random function
R, whether A is able to forge on a given attempt, if it hasn’t forged already, is a completely
independent event of the other attempts, and thus the probability of it happening is uniform.

o
Pr[A forges] < Z Pr[A forges on ith Vi query | A didn’t forge on first ¢ — 1 queries]

i=1
qv

< ZEZ(JUE

i=1
(]

So using a random function R as F} gives us a (00, ¢s, ¢u, 587)-MAC. Of course, in practice
we can’t use a real random function because of the difficulty of specifying it. Instead, we simply
use a PRF as before.

Theorem. If F is a (t,qs + qu,€)-PRF, then using F' gives a (t,qs, qu, € + 585)-MAC.
Proof. Straightforward, so omitted here, but can be found in the Bellare-Rogaway notes. O

Suppose we want to have (oo, 1,1, 2%) security. For even greater simplicity, suppose that the
message we are trying to send is just a single bit. So let z,2’ € {0,1} and F : Keys x {0,1} —

Tags.

A random function is now very easy to specify, since there are only two possible inputs. So say
R:{0,1} — {0,1}%%. We can specify R as follows:

0 — —Ko—
1 — —Kl—

Now we can pass our message bit b through our sending function S which uses R to create the

appropriate tag Kjp.
b [5) 5

The attacker doesn’t get to see the result of the other bit getting passed through S, so the
attacker can only guess randomly what the other K}, tag is. Thus we have a (0o, 1,1, 2%)-MAC.
From the above theorem, this also gives a (00,1, ¢y, 557)-MAC.

