
Adversarial Examples in Machine Learning

CS 261 Lecturer: David Wagner Scribe: Arun Ganesh

March 31, 2021

1 Introduction

In machine learning, we often train neural networks on many examples to solve classification prob-
lems. The end result is a model fθ, with some parameters θ, that takes in an example x and outputs
a prediction (a label or a distribution over labels) y = fθ(x). There is a loss function ` that takes
in a prediction and label and outputs the loss of the prediction on the label. Our goal during
training is to solve the problem minθ

∑
i `(fθ(xi), yi), where xi, yi denotes the ith example and label

respectively, and the sum is over examples in the training set.
An adversarial example arises when we can make a perturbation to an example x that causes

fθ to misclassify x, but the perturbation is ideally imperceptible to humans, or at least would not
cause a human to misclassify the example. For example, a picture of a school bus, after changes
that humans can’t see, can become classified as a hummingbird. Some other examples that are
security risks in that they could cause a self-driving car to get into an accident:

• A stop sign getting classified as a yield sign.

• Objects that are imperceptible while driving (e.g. an obstacle that gets classified as part of
the road).

• Markings that cause a car to think a lane turns one direction, causing it to veer off the road
or into another lane.

• Markings on the road that a car thinks are a curb, causing it to swerve into a different lane.

• A “patch” that can be printed and placed a road that is completely flat, but is classified as an
obstacle that needs to be driven around.

2 Math Behind Attacks

Let Ψθ,x,y(δ) = `(fθ(x+δ), y). The problem of finding adversarial examples is finding maxδ Ψθ,x,y(δ)
such that ||δ|| ≤ ε, where ||δ|| is an appropriately chosen norm. Informally, we want to maximize
how incorrect the classification fθ(x + δ) is, while keeping the size of the perturbation δ to be
small. Solving this constrained optimization problem is a bit tricky, so in Carlini and Wagner, they
instead solve the unconstrained optimization problem maxδ[`(fθ(x + δ), y) − c ||δ||], where c is an
appropriately chosen constant.

We still need to specify what norm we are using in the term ||δ||. A popular choice is the `2-norm.
This leads to ||δ|| being differentiable with respect to δ. The term Ψθ,x,y(δ) is also differentiable
with respect to δ in practice: to train a neutral net we need fθ to be differentiable so we can run

1

gradient descent. So for the `2-norm, gradient descent lets us solve the unconstrained optimization
problem.

However, the `2-norm doesn’t have a clean interpretation for what the perturbations do to the
examples. In contrast, the `∞-norm gives a clean interpretation: e.g. for an image, every pixel
changes in intensity of its RGB values by at most a small amount. Thus a perturbation δ is likely
imperceptible to humans if ||δ||∞ is small. However, the `∞-norm of δ does not have a nice gradient,
since the gradient will be non-zero for all but the largest coordinate.

The PGD attack instead returns to solving the constrained optimization problem maxδ Ψθ,x,y(δ)
such that ||δ||∞ ≤ ε. To solve this problem, suppose Ψ were a linear function of δ. Then the solution
is simply to set each coordinate of δ to either ε or −ε, depending on the sign of its coefficient in
Ψ. Of course, neural nets are complicated functions that are often far from linear. However, we
can use first-order Taylor series to view them as locally linear. More formally, the idea of the PGD
attack is to take an iteration count I, and do the following I times: Start with δ0 = 0, and compute
δj+1 = δj + ε

I · sign(Ψθ,x,y(δj), then use δI as the final perturbation.
One issue we haven’t discussed is that the final adversarial example x + δ needs to be a valid

example. For example, if x is an image, we need the intensities of each pixel’s RGB values to be in
the range [0, 255]. However, if we simply project δ back into the space of valid examples after each
update to δ, then gradient descent still converges.

Another issue is that the above optimization problem assumes that we have the ability to
perturb the entirety of each example. In practice, an attacker can’t e.g. paint the sky or the clothes
of strangers walking by to try to attack a camera. However, this constraint is easy to add to the
above problems. We now simply enforce that δ = 0 in the region that we can’t perturb, equivalently
turning Ψ into a function of a lower-dimensional vector corresponding to the coordinates of δ that
are allowed to be zero. In turn, we’re simply solving a lower-dimensional optimization problem,
which can only be easier than the original problem.

3 Defenses

In this section we discuss possible defenses against adversarial examples and their pitfalls.

3.1 Ensemble Defenses

In an ensemble defense, we train multiple models. When classifying an example, we aggregate the
predictions of all the models somehow. Thus an adversarial example must fool e.g. a majority of
the models to be misclassified.

While this seems robust, mathematically speaking the adversary’s job is not much harder. All
the adversary needs to do now is use the techniques from the previous section for the loss function
` which uses the aggregated model instead of any single model.

3.2 Adversarial Training

In adversarial training, instead of optimizing our loss function, we optimize the worst-case loss
under some perturbation set. More formally, rather than solve minθ

∑
i `(fθ(xi), yi), we solve

minθ
∑

i maxδi:||δi||≤ε `(fθ(x+ δi), yi).
This is a harder optimization problem since we have a minimax objective, rather than just a

minimization or maximization. In practice, given our model, we might instead use a known attack
to generate a fixed δi that attacks each example under our model. We then solve the problem

2

minθ
∑

i `(fθ(xi + δi), yi), which is just a minimization problem. In the next iteration, we use the
new model to generate a new set of δi.

Adversarial training does pretty well in practice. e.g. without adversarial training, it suffices to
change pixel intensities by at most 1 to fool classifiers. With adversarial training, this number goes
up to roughly 5. This is a large multiplicative improvement, but note that changing pixel intensities
by 5 is still fairly imperceptible to humans.

3.3 Secret Model

A very simple idea is just to not publish our model in any form. However, if the attacker knows
the classification problem we are trying to solve, they could simply train their own model on a
similar training set. In doing so they will likely arrive at a model similar to our model, and then by
attacking their own model generate adversarial examples that also likely attack our model.

3.4 Randomized Smoothing

In randomized smoothing, the defender chooses a noise distribution η and classifies an image based
on the distribution fθ(x+η) rather than fθ(x). For example, if fθ outputs a single label then fθ(x+η)
is a distribution over labels, and our “smoothed” classifier might output arg maxi Prη[f(x+ η) = i],
i.e. the most likely label in the distribution fθ(x+ η).

One can prove theorems showing that if the smoothed classifier has a large “margin”, i.e. the
distribution fθ(x + η) takes on value i with probability at least p, then for all δ such that ||δ||
is at most some function of p, the smoothed classifier has the same output on x and x + δ. Put
another way, not only do smoothed classifiers give robust predictions, but they can certify that the
predictions are robust to a certain perturbation set. This is what is known as “certified security.”

4 Discussion (Fred): Synthesizing Robust Adversarial Examples

In discussion, we considered “robust adversarial examples”, which in this section mean examples that
work in the real world. The idea is that often, we do not classify e.g. a single image, but a series
of images corresponding to the view of a camera over a time interval. An adversarial example that
works for a single frame in this interval might not be so problematic. For example, a self-driving
car that classifies a stop sign as stop sign 99% of the time that the stop sign is in its vision probably
will not behave too dissimilarly to one that correctly classifies the stop sign the entire time. So for
an adversary to properly attack the self-driving car, it needs to fool the classifier for a reasonably
large fraction of this time. During this time, by virtue of the self-driving car moving, we are also
applying some number of transformations to the stop sign as an image. For example, by driving
closer to the stop sign, we zoom in on it. By changing lanes, we might stretch certain dimensions
of the stop sign. By driving on a sloped road, we might rotate our view of the stop sign.

To update our mathematical formulation, we think of there being a transformation layer between
the image and the model. Before seeing the image, a transformation is applied to the image, and
then the transformed image is passed to the model. For simplicity, we can think of the transfor-
mations as being drawn from some distribution. Our loss function is now the expected loss under
this distribution, or perhaps the expected loss conditional on being in the “best”, say, 51% of the
distribution. In Athalye et al., the authors consider attacking models under this formulation. They
were able to print 3D objects and slightly perturbed versions of these objects such that e.g. the
objects were correctly classified from most angles and rotations, but the perturbed objects were
classified incorrectly under almost all angles and rotations.

3

There are some limitations to the formulation and attacks the author considered. For example,
things like light sources and shadows projecting at different angles are hard to model mathematically,
and might offer additional robustness against adversarial example. There are also may be many
real-world perturbations that the paper might not consider. Finally, the authors only considered
images containing 3D objects that have transformations applied to them. Other formats like audio
might have different transformations to be considered.

5 Reconstruction Attacks

We conclude with a brief discussion on reconstruction attacks. The idea is that if an attacker has
access to the classifier f , they can attempt to reconstruct instances from the training set used to
generate f , which may be confidential. The idea is to use gradient descent to search over inputs,
and find one that minimizes the loss for a given label. That is, we solve the problem minx `(fθ(x), y)
for a target label y.

For example, given a facial recognition model, we could find an input that causes `(fθ(x), “JohnSmith′′)
to be low, which might let us reconstruct John Smith’s face. As another example, a natural language
processing model trained on a corpus of private emails might be used by an attacker to reconstruct
sentences from those emails.

4

	Introduction
	Math Behind Attacks
	Defenses
	Ensemble Defenses
	Adversarial Training
	Secret Model
	Randomized Smoothing

	Discussion (Fred): Synthesizing Robust Adversarial Examples
	Reconstruction Attacks

