03/15 - Anonymity

How does Tor fit into anonymity?
- Want sender anonymity (mail, no return address), receiver anonymity (don’t know who received the mail)

Tor - fun historical points
- US Navy Invention
- Initially rejected as a paper, eventually won test of time award
- 3M million estimated users (!)

Mixed Nets - early proposal
- Batch up a bunch of messages
 - Random reorder -> re-encrypt
 - “Remailer”
 - Downside - latency

Tor
- No batching -> low latency!
- Distributed relays
 - Low latency in exchange for lack of protection against a global eavesdropper

Potential weaknesses:
- Traffic confirmation
 - Correlated messages coming in and out of the network
 - Alice sends at (T+1, T+3), bob receives at (T+4, T+6)
 - Could be mitigated
 - Constant bitrate (destroy timing information)
 - But really expensive
 - Selecting paths so they are not in the same country, heuristical, but makes it harder to spy on
 - Fun historical fact (CMU)
 - Silk road
 - Set up relays, insert invisible tags and attempt to be first and last replay in scheme
 - Satisfying defense is hard
 - NSA: attack endpoint using vulnerability in firefox
 - Find TOR connections (easy)
 - Mount man in the middle attack
 - Fox acid : imposter website
 - Client side security is important
 - Potentially fix (restrict TOR browser to https websites)
 - Potentially hard to deal with national spy agencies

Censorship (a story of a cat and mouse)
- Imagine you have keywords in unencrypted search
 - Could ask the search engines to turn off encryption
- Users could switch search providers
 - Nations could block those search engines (e.g., china + google)
- VPN
 - Nations could find VPNS
 - Look at packets and look for signatures
- Users may uses Tor
 - Nations may attempt to find Tor connections
 - Find onion routers
 - Tor may try to generate non-listed bridge nodes
 - Not publicly listed
 - IP Scanning
 - Send Tor bridge type request to all IP addresses
- Domain fronting aka decoy routing
 - Quirk of TLS handshake
 - Web address is sent twice, one encrypted in TLS handshake
 - Once in the clear in handshake
 - Only in host header, use real website, in the clear, use some dummy address
 - April, 2018: Telegram (real world)
 - Was blocked in Russia
 - Telegram resorted to using Google/Amazon CDNs with domain fronting
 - Russia responds by blocking Google and Amazon CDNs (wow)
 - Collateral damage
 - Protect anonymity by making the only way to shut things down is to cause too much pain
 - One CDN exists at the moment that allows domain fronting (microsoft azure)
 - Could go down at any point, major blow to domain fronting defense

Discussion (Bock et al.)

Nation-state-level censors
- Powerful entities able to inspect, inject, and/or drop traffic throughout countries
 - Two broad methods: on-path or in-path
 - On Path: censor obtains copies of packets, inject packets that end-hosts accept, such as TCP RSTS to tear down connections
 - In Path: man-in-the-middle, can simply drop packets altogether or hijack connection

Current Evasion Methods
- Existing methods rely on packet-manipulation strategies: alter and/or inject insertion packets at one endpoint (processed by censor only):
 - to de-synchronize censor’s state (eg. thinks connection is down)
 - confuse censor into not recognizing censored keywords through segmentation
- All prior work rely on some amount of client side evasion

Goal: Have servers outside censoring regime to help clients evade censorship without clients having to install any extra software

Geneva:
- Use genetic algorithm Geneva to automatically discover packet-manipulation strategies that evade censorship
 - Composes of 5 building blocks: duplicate, fragment, tamper, drop, send
 - Trains against censors by being run from within censoring nation-state
 - Authors extend Geneva to be purely server-side and apply to other protocols beyond HTTP
- Evaluated in China, India, Iran, Kazakhstan across five protocols (DNS, FTP, HTTP, HTTPS, SMTP) by running Geneva server-side
- Interesting findings:
 - Some evasion strategies succeed some of the time by exploiting bugs in censor synchronization
 - Although the strategies operate at TCP level, the success rates vary depending on the higher-layer application -- Great Firewall handles different protocols differently