
3/8 Integrity

Lecture

Consider an environment where we have multiple users reading and writing to an

untrusted server. In today's lecture we explore some ideas on how can we build some

integrity guarantees into this model.

Append-only Log

We are going to be working with an insert-only multiset with the following operations:

is x in S?

T := add x to S

is S a subset of T?

How can we support this kind of data structure? We will go through a variety of

approaches and evaluate them on based on their runtime and space complexity

attestation given by the server.

Solution 1: Hash-chaining

We could use a hash chain, which is a data structure similar to a linked list, where

the data in each node contains a hash of the previous node.

Operation Runtime Space

is x in S? O(n) O(n)

T := add x to S O(1) N/A

is S a subset of T? O(n) O(n)

Solution 2: Merkle Tree, in order they were inserted

Operation Runtime Space

is x in S?
O(log n) if the item is in the

tree, O(n) otherwise

O(log n) if the item is in the

tree, O(n) otherwise

T := add x

to S
O(log n) N/A

is S a

subset of

T?

O(log n) if S is a subset of T,

O(n) otherwise

O(log n) if S is a subset of T,

O(n) otherwise

Solution 3: Merkle Tree, in sorted order

Operation Runtime Space

is x in S? O(log n) O(log n)

T := add x to S O(log n) N/A

is S a subset of T? O(n) O(n)

Discussion

What if we used solution 2 and 3 simultaneously? This creates a consistency

requirement. The server has to prove to us that the two data structures have the same

data.

If there is one client, every time we insert, we can check that they are in sync. If

there are multiple clients, however, we are not aware of all inserts; we use the

subset operation to ensure that our prior view of the system is a subset of the

current system state. If we use both solutions, solution 2 has an efficient subset

operation while solution 3 doesn't so we still have a problem.

We could also go the Certificate Transparency (CT) route, where external auditors

check for consistency rather than the client. Moreover, CT uses an auxilliary data

structure called a sparse merkle tree. Spare merkle trees provide a convenient way to

map from 2^256 items to single bits.

Proof of membership is very efficient for both if an element is or isn't

contained in the set.

Easy to do an insert in log(n) time.

Subset is really slow.

This approach has similar security properties to using solutions 2 and 3.

Equivocation

Now what if the server provides a different view of the log to different users? This

presents a problem since the server can be honest w.r.t to the auditors but mess with

the clients. CT uses gossip between browsers, where the clients effectively issue a

subset query between two clients views of the log.

What if clients lie about server hashes? Well we just make sure that the server signs

its hashes.

Some issues with this approach:

How do clients find each other?

Certificates are the root of trust

What if an oppresive regime wants to attack a handful of users? If those people

don't check with anyone else, then they will never resolve the fork. This is

tough with firewalls. CT wanted to set up trusted web servers that does the

check but this has privacy issues.

Discussion: Secure History Preservation Through Time

Entanglement

Secure history preservation is useful technique in attesting state in a tamper evident

manner. Some applications of secure history preservation include:

Secure time stamping

Cryptographic, end-to-end voting systems. Voters can check that the encrypted

version of the ballot is uploaded and never removed.

Definitions

A secure timeline is a tamper-evident history record of the states through

which a system goes throughout its operational history.

A service domain is some system offering a service to some clients.

An authenticated logical clock is a clock in which each time step is annotated

with the state in which the service is in at the time, and an authenticator.

Scheme

Let h be a one way hash function.

At time i , the clock has authenticator T_i .

At time i+1 , T_i_1 = h(i, T_i, S_i)

The problem with this scheme is consistency between different timestamp services.

Timeline entanglement allows a group of mutually distrustful service domains to

collaborate towards maintaining a common, tamper-proof history of the collective

timelines. This approach requires coordination between timestamp services and its

construction can be found here.

https://www.usenix.org/legacy/events/sec02/full_papers/maniatis/maniatis.pdf

