
Scribe Notes: Control Flow Integrity

Alex Thomas

February 18, 2021

Control Flow Graph

• Lines of code is a node in a graph a.k.a basic blocks or a sequence of code that don’t branch/jump

• Any control flow (if statements, calling a function) are edges I.E. If statements may have 2 edges (taken or not
taken)

• Built on compile-time

Figure 1:
Illustration
of CFG
from
CS164,
Koushik
Sen

Forward Edges

• Indirect jumps or indirect calls

• These are assembly instructions that jump to a register (the jump address is not fixed)

Backward edges

These are return instructions

Why did the CFI paper not protect against backward edges?

• Paper states that there are other techniques one can deploy to protect against forward edges

• Performance cost in trying to protect against backward edges.

1



• Why?

– There are two calls

– Direct calls to a fixed address (i.e. call 0x1234)

– Indirect calls to a register value. (i.e. jmp %rax)

– There are many more direct calls than indirect calls; each call has a return

– How to protect against return instructions? Use a shadow stack.

∗ Have a normal stack frame

∗ Have another stack just for return addresses

∗ Check if the return address and the normal stack upon popping match.

∗ There is a 10% performance overhead, but there is hardware support from Intel that will mitigate this
overhead to a 3.5% overhead

Coarse policy (one set of valid jump/call targets)

• Set of valid jump/call targets

• How do we get all indirect targets? Can do some form of static analysis. Find all ways an address of a
function pointer is set to a register. We can filter out further by static code analysis by looking at the function
signatures.

Precise Policy (one set of valid jump/call targets per indirect call)

• For each indirect call, find a set of all values the register can take

Springboard

– Naive:

call *rax

Transformed into..

check rax; jump if error;

call *rax

– Array has one entry for each valid function that you can jump to. For example, if a target can jump to
function f, g, or h

0x1000 jump f

0x1004 jump g

0x1008: jump h

0x100c: halt

...

call *rax

...

and *rax 0xF; or *rax 0x1000 # Check that %rax is within the springboard range

– Enforces that rax is within the springboard by doing a bitmask

Attacks against CFI

Can CFI stop the following attacks?

Malicious Code Injection

• Attacker cannot overwrite existing code and if they did write code outside existing code, CFI would prevent this.

2



ROP Attacks

• It does not stop ROP attacks because return statements (backward edges) are outside the scope of CFI.

• Is this ok?

– ASLR helps

– Bounds checking helps, but has high overhead

Data-flow Attacks

• CFI doesn’t protect data flow attacks

Critical Flow Attacks

• A path that can be very dangerous (launch nukes), but still a valid path with respect to the CFG

• Does not protect from these class of attacks as a malicious path still counts as a possible route

Control-flow Bending

• kernel vsyscall: This is found in libc and every syscall is routed by calling this function

• If an adversary is able to find a route to this path, an attacker can route any arbitrary syscall (i.e. execv)

• Virtually a path anywhere in code to kernel vsyscall

• May find arbitrary read, write, and call gadgets (subject to CFI policy)

• Coarse policy is vulnerable to control-flow bending

• Precise Policy for forward edges, but no backward edge protection ⇒ vulnerable to control-flow bending

• Precise policy for forward edges and backward edges ⇒ some are vulnerable, some are not

Bounds Checking vs CFI

• Bounds checking is inefficient, but has more reliable protection

• Bounds checking has limitation with object granularity (function pointer in a struct)

• Bounds checking does not do anything about use-after-free attacks (dangling pointers)

• CFI has both spatial and temporal safety; bounds checking is just spatial safety

• Compatibility can be bad for bounds checking; CFI has better compatibility

• How do “use-after-free” errors manifest?

for(p = list; p != NULL; p = p->next){

free(p)

}

Allocated data is freed, but the pointer is used to find the next linked list.

Temporal Memory Bugs

Electric Fence

• Put each object in its own page

– A 3 byte object is on its own page (4096 bytes)

• If an object is deallocated, revoke all permissions to that page

• Any attempt to access deallocated object will cause a failure

3



• Can the page be reallocated to another object?

– Nope!

• Cons

– Wasteful memory

– Internal fragmentation

– Wasteful for virtual address space

– Wasteful for physical memory

– Must keep track of used virtual pages

– Wasteful small objects (internal fragmentation)

– Pollutes TLB and kernel data structures for virtual memory regions

– Each object requires a separate translation

Dhurjati-Adve

Physical address P: [O1 O2 O3 O4 O5]

Virtual address V1-> P, V2->P, V3->P, ...

• Objects are pushed into the same page

• All objects map to the same page, as aliasing can be done

• When I free O1, revoke permissions on V1

• Other objects may still map to the same page

• Memory allocator has a bitmap to keep track of the objects which are mapped to the same page. Alternatively,
we can use a reference counting approach to implement physical page reuse

• Cons

– Virtual address space is still wasted

– Pollutes TLB and kernel data structures for virtual memory regions as we still must keep track of used
virtual address space

Oscar (Dang et al)

• Monotonically increase your virtual address for allocated objects

• Any object allocated will never reuse virtual address space

• No longer have to keep track of used virtual address space as we just need to keep track of a single marker

• Stops any use-after-free bugs (since no address is ever reused)

4


