Scribe Notes: Control Flow Integrity

Alex Thomas
February 18, 2021

Control Flow Graph

e Lines of code is a node in a graph a.k.a basic blocks or a sequence of code that don’t branch/jump

e Any control flow (if statements, calling a function) are edges LE. If statements may have 2 edges (taken or not
taken)

e Built on compile-time

X =
B>0

Yi=Z+W Yi=0

Figure 1:
Ilustration
A=2*X of CFG
from
CS164,
Koushik
Sen

Forward Edges

e Indirect jumps or indirect calls

e These are assembly instructions that jump to a register (the jump address is not fixed)

Backward edges

These are return instructions

Why did the CFI paper not protect against backward edges?
e Paper states that there are other techniques one can deploy to protect against forward edges

e Performance cost in trying to protect against backward edges.



e Why?

— There are two calls

Direct calls to a fixed address (i.e. call 0x1234)

Indirect calls to a register value. (i.e. jmp %rax)

There are many more direct calls than indirect calls; each call has a return

How to protect against return instructions? Use a shadow stack.

* Have a normal stack frame
*x Have another stack just for return addresses
% Check if the return address and the normal stack upon popping match.

x There is a 10% performance overhead, but there is hardware support from Intel that will mitigate this
overhead to a 3.5% overhead

Coarse policy (one set of valid jump/call targets)

e Set of valid jump/call targets

e How do we get all indirect targets? Can do some form of static analysis. Find all ways an address of a
function pointer is set to a register. We can filter out further by static code analysis by looking at the function
stgnatures.

Precise Policy (one set of valid jump/call targets per indirect call)

e For each indirect call, find a set of all values the register can take

Springboard
— Naive:

call *rax

Transformed into..

check rax; jump if error;
call *rax

— Array has one entry for each valid function that you can jump to. For example, if a target can jump to
function f, g, or h

0x1000 jump £
0x1004 jump g
0x1008: jump h
0x100c: halt
call *rax

and *rax OxF; or *rax 0x1000 # Check that %rax is within the springboard range

— Enforces that rax is within the springboard by doing a bitmask

Attacks against CFI

Can CFT stop the following attacks?

Malicious Code Injection

e Attacker cannot overwrite existing code and if they did write code outside existing code, CFI would prevent this.



ROP Attacks

It does not stop ROP attacks because return statements (backward edges) are outside the scope of CFIL
Is this ok?

— ASLR helps
— Bounds checking helps, but has high overhead

Data-flow Attacks

CFI doesn’t protect data flow attacks

Critical Flow Attacks

A path that can be very dangerous (launch nukes), but still a valid path with respect to the CFG

Does not protect from these class of attacks as a malicious path still counts as a possible route

Control-flow Bending

__kernel_vsyscall: This is found in libc and every syscall is routed by calling this function

If an adversary is able to find a route to this path, an attacker can route any arbitrary syscall (i.e. execv)
Virtually a path anywhere in code to __kernel_vsyscall

May find arbitrary read, write, and call gadgets (subject to CFI policy)

Coarse policy is vulnerable to control-flow bending

Precise Policy for forward edges, but no backward edge protection = vulnerable to control-flow bending

Precise policy for forward edges and backward edges = some are vulnerable, some are not

Bounds Checking vs CFI

Bounds checking is inefficient, but has more reliable protection

Bounds checking has limitation with object granularity (function pointer in a struct)
Bounds checking does not do anything about use-after-free attacks (dangling pointers)
CFT has both spatial and temporal safety; bounds checking is just spatial safety
Compatibility can be bad for bounds checking; CFI has better compatibility

How do “use-after-free” errors manifest?

for(p = list; p != NULL; p = p->next){
free(p)

}

Allocated data is freed, but the pointer is used to find the next linked list.

Temporal Memory Bugs

Electric Fence

Put each object in its own page
— A 3 byte object is on its own page (4096 bytes)
If an object is deallocated, revoke all permissions to that page

Any attempt to access deallocated object will cause a failure



e Can the page be reallocated to another object?
— Nope!
e Cons

— Wasteful memory

— Internal fragmentation

— Wasteful for virtual address space

— Wasteful for physical memory

— Must keep track of used virtual pages

— Wasteful small objects (internal fragmentation)

Pollutes TLB and kernel data structures for virtual memory regions

Each object requires a separate translation

Dhurjati-Adve

Physical address P: [01 02 03 04 05]
Virtual address V1i-> P, V2->P, V3->P,

e Objects are pushed into the same page

e All objects map to the same page, as aliasing can be done
e When I free O1, revoke permissions on V1

e Other objects may still map to the same page

e Memory allocator has a bitmap to keep track of the objects which are mapped to the same page. Alternatively,
we can use a reference counting approach to implement physical page reuse

e Cons

— Virtual address space is still wasted

— Pollutes TLB and kernel data structures for virtual memory regions as we still must keep track of used
virtual address space

Oscar (Dang et al)

e Monotonically increase your virtual address for allocated objects
e Any object allocated will never reuse virtual address space
e No longer have to keep track of used virtual address space as we just need to keep track of a single marker

e Stops any use-after-free bugs (since no address is ever reused)



