
CS 261: 2/3 scribe notes 
Rachel Freedman 

 

Memory Safety (spatial) 
 
Spatial memory vulnerabilities​ are themselves not the most common type of vulnerability, but 
browser or file exploits are often memory-related. The prototypical example of a spatial memory 
exploit is when a program accesses memory and intentionally writes to an out-of-bounds 
pointer, which allows it to inject malicious code. 

Common Defenses 
● Address Space Layout Randomization (​ASLR​) 

○ Allocates objects to random locations in the heap 
○ Prevents attacker from predicting where (for example) return addresses that they 

can overwrite are stored 
● Data Execution Prevention (​DEP​) or No-Execute (​NX​) 

○ Requires that regions of memory that store data are marked non-executable 
○ Prevents attacker from executing malicious code somehow inserted into the data 

segment of memory 
● Stack ​Canaries 

○ Inserts random values directly before return addresses 
○ When the program makes a function call, it first checks that these canary values 

haven’t changed 
○ Prevents attacker from replacing the return address by overwriting this whole 

section of memory (including the canary) 

Return-Oriented Programming 
● Return-Oriented Programming (​ROP​) attack 

○ Overwrites program return address with an address pointing to another piece of 
code in the same program (so validly executable) 

○ Return-into-libc attack​ (baby ROP): find somewhere in code that does 
something useful for the attacker, overwrite return address to jump there 

○ ROP​: Piece tiny snippets of the original code (called ​gadgets​) together to do 
something malicious (ex. run a shell) 

○ NX alone doesn’t defeat ROP attacks because the gadgets come from parts of 
the program (which are marked executable in memory) 

○ However, NX and ASLR in combination can defeat ROP attacks because the 
attacker can’t reliably find return addresses to overwrite and gadgets to combine 

● Blind ROP (​B-ROP​) attack 
○ Enables ROP attack even when attacker doesn’t have access to the codebase 
○ Attacker first finds gadgets that stop and crash the program, then bootstraps up 

to more useful gadgets, eventually combining enough to create a shell command 



CS 261: 2/3 scribe notes 
Rachel Freedman 

○ Because the program crashes when canaries are incorrect, the attacker can 
brute-force-guess canaries bit-by-bit 

 

Other Schemes for bounds checking 
● PAriCheck 

○ Include a table that stores a unique ID for every object 
○ Check whether first and last pointer corresponds to same ID 

● Fat pointers 
○ Pointer includes 3 pieces of information: address, “base” (start of object) and 

object size 


