
Inline Reference Monitors

Michael McCoyd

7 Septemeber, 2012

1 SFI sandboxing

SFI is a way to mitigate risk of untrusted guest code by constraining what it can do. For example
running a image decoder or arbitrary plugin in a browser at close to full speed. Sand Box ” some
part of address space for guest” can not trample on browsers (host) data structures.

SFI on RISC Can modify the code so nothing bad can happen. All instructions are fixed length
so for a given byte stream there is only one instruction stream.

Why is SFI on CISC hard SFI on CISC was harder as variable length instructions. The
attack can jump to an address in the middle of an intended instruction and thus create a separate
instruction stream. Variable length instructions makes it impractical to modify code to always be
safe.

PittSFIeld: transform CISC into fixed length “instruction” architecture Was the next
revolution and showed could have fast SFI on x86. Approach was to ensure that jumps only occur
to the start of 32bit chunks, by masking addresses.

32 bytes Need to fit in chunk all the checks you want for that instruction, else you could jump
past the checks. 32 bytes gives enough room if rewrite any really long x86 instructions. Also a
power of 2 given bit masking method of enforcing addresses.

2 SFI Development Path

SFI (RISC) -> PittSFIeld (CISC) -> (5 years) -> NaCL x86 w/ segments -> NaCL x86-64, ARM

Native Client x86 32bit (NaCl) key: use x86 segment registers to reduce overhead of PittS-
FIeld. x86 has two memory protection mechanisms: segmentation and page tables. 64 bit removed
segmentation as not often used. Criticized as “locking” web into 32bit and x86, not ARM as well.

NaCL ARM and 64bit x86-64 and ARM with modest success, but only modest. 20 years
deployment from initial RISC SFI to cross platform SFI.

Inputs Pitsfield needs assembly code (source), research system, can not be applied to arbitrary
binaries. NaCl - modified complier - need the source to instrument the binary.

1

2.1 Trusted Computing Base

A fundamental part of PittSFIeld is that rewriter need not be trusted, only the verifier.
Trusted Computing Base (TCB) code that needs be correct for security properties to be true.
Instrumentor takes x86 program source and produces an instrumented x86 program. Add masks

and checks before jumps. -> instrumented Not part of the TCB. Bugs in instrumentor could
only cause it to fail to accept program or change program semantics.

Verifier at runtime verifies properly instrumented. Checks each jump or store immediately pre-
ceded by mask instruction.

The security property that we want is sandboxing: not able to write outside its designated
security area. For PitSFIeld, the TCB is only the verifier (and the Browser/OS). The PitSFIeld
TCB was only intended to assure security, not proper execution. Crucially this split architecture
allows the verifier to be much simpler than the rewriter.

2.2 Why was this separation possible?

1) Transform code to subset of x86 that was easier to verify Change a hairy instruction
set into a simpler subset that is easier to verify. For example, change crazy address modes to easier
code. Instead of: “eax + 8 * ebx + 17 ”, use lea to figure out what address that is, load into other
register ecx, then mask ecx, then store to address in ecx.

2) Sufficient conditions, but stricter than necessary The transformation and verification
are sufficient to ensure we do not write outside sandbox but may be more strict than needed to be.
The verifier can be simpler as it has no memory across chunks. Verifier assumes nothing about a
block of code at its start. Marks registers as safe for memory or jumps as their values are masked.
Takes about 2 bits for each register at each point in code; 1 bit for code, 1 bit for data.

Transform and check In important technique is to map a hairy problem (in this case an in-
struction set) into much smaller subset with easier semantics. Here it is easy to see that the smaller
subset is safe and a verifier for it is possible. The insight needed is in picking the safer subset or
problem. A problem with the technique is that it can reduce efficiency.

Hardware requirements PitSFIeld does not require NOX bit, nor use if hardware has it.

2.3 PittSFIeld Memory Design

PittSFIeld had clever memory layout so memory checks are just masking.

Base address Use

0x30000000 host code & data

guard pages

0x20000000 guest data & stack

guard pages

0x10000000 guest code

guard pages

0x00000000 Zero tag region

The sandbox is the guest code and data areas, maybe also the zero tag region.

2

Invariant: The guest code will never write outside the guest data region
How: instrument every write instruction
Need to not only prevent writes outside of guest area, but also writes that could change the code
and remove its write protections.
Ensure: every write instruction in code is what was loaded in
So: need to protect code are from writing to prevent changes to the instructions.
Method: every write instruction is masked

2.4 Examples

2.5 Write memory

Original Rewritten Comments

mov eax, (ebx)
and 0x20FFFFFFFF, ebx
mov eax , (ebx)

mask ebx to either 0x00..... (unused zero
tag) or 0x20..... (guest data)

Could imagine check with branch, but branch instructions are slow. It is faster to just force it
into that range. Writing to the zero tag area is fine as either never use that area or set the OS to
mark them not writable.

2.6 Jump

Original Rewritten Comments

jmp 0x12345678 [no change] Constant address so statically reject or al-
low

jmp (eax)
AND 0x10FFFFE0 , eax
jmp (eax)

0x10... masks to guest code area
0x....E0 alignes to start of chunk

The masking of a jump will allow execution to enter the zero tag region. Thus that region needs
to be marked not used by the page tables.

2.7 Return

Return is effectively an indirect jump, which is unsafe.

Original Rewritten Comments

return
pop eax
and 0x10FFFFE0 , eax
jmp (eax)

Return address on stack in guest data area,
function body could have changed the re-
turn address.

Problematic for performance as modern x86 hardware caches recent return addresses and will
speculate where an upcoming return will go. This rewrite removes the return speculation. A
significant performance overhead for programs with many call returns.

3

Concurrency A return optimization that does not work is to AND the return addess in place
on the stack just before the return. This preserves the speculation gains. It does not work in
the presence of concurrency. With two guest threads one thread could change the return address
between the mask and the return of the other. Concurrency was not an issue with the earlier
examples as registers are thread local, saved and restored between threads.

Can extra hardware support solve the problem? Instruction that blocks other threads
for one instruction. Might have different threads of same process have different protection views of
the same memory.

How generally solve concurrency issues? Common defense against malicious code chang-
ing your data is to make private copy in local state know others can not modify. Easy to erroneously
write: ”check(x), do with(x)”. “time of check to time of use” vulnearability, a race condition
on shared mutable state. This is why kernels turn off all concurrency for critical actions.

2.8 Read memory

Original Rewritten Comments

read (ebx), eax [no change] Reading is not part of their security claims.
User must judge if PittSFIeld’s claims met
users needs.

Does allow leak of privacy. Fixing by checking all reads is big performance hit.

4

2.9 SFI vs OS process separation

Why do we need both SFI and OS processes? What are the tradeoffs of choosing between them?
Seems a lot of similarity in wanting to ensure isolation between the guests/processes. Using an
example of a video player, how do we communicate encoded video to the guest?

Standard argument, but no great performance comparisons, is:

Feature SFI (PittSFIeld) OS

Call speed host to guest fast - no need to copy data slower - fork, copy data

Guest to host writes Must break sandbox Same context switch as call.

2.10 Details

Feature SFI (PittSFIeld) OS

Basic setup Code rewriting for separation page tables and memory pro-
tection to ensure each has own
virtual address space.

Startup costs compile time rewrite forking overhead

share data - maybe SFI faster
host→guest just write data

into guest, read any
guest data.

host←guest: read just
access, or browser store
originally in players
area.

host←guest: write ???

IPC with API you create

Multiple guests No - memory layout prevents Yes

Memory mapped files Limited up to address space size

Cross domain calls host→guest: trivial
host←guest:

IPC marshal

Program changes Normal access when reading
data structures in host

Need to marshal / unmarshal
for each access

access to resources rewrite ??

Other alternatives to SFI are lightweight mechanisms to run in virtual machine. OSDI 2012
had an interesting paper “Dune: Safe User-level Access to Privileged CPU Features” that used
hardware virtualization to give a process limited access to CPU privileged features.

Clearly SFI is useful for very specialized low end hardware with out memory protection.

2.11 Can Guest talk to Host?

How does SFI return any results to the caller, as masked inside sandbox.

5

Imagine running a guest video encoder. Version 1: only write to from buffer on stream. That is
nice but also want to connect back to wed site for streaming video. Lets say that is ok to the site
we came from but not other sites.

How do we do that?
Adding access code into the guest will not let that code talk to the browser, as still sandboxed.

Could store arguments in guest data and cause host to read and execute on them. We could use
page faults or other exceptions to transfer to host, but we are reimplementing system calls.

Cleaner is to change verifier to allow one address that you can call to outside the sandbox, a
clean implementation of system call.

Stack Where is stack in this process? Guest and host would share a stack. So one guest could
read the stack after host use. If two guests were running, one could modify the hosts stack out
from under it. If such concurrency, host copies arguments to a separate stack used just by the host.
If host call back to guest, host should save its registers before call guest.

Make lots of defensive copies with mutual distrusting parties in face of concurrency, much like
you need in OS design. Paper did not discuss. The interesting issues of OS design show up in SFI
as well. Could allow no callbacks to guest.

3 Reference Monitor Pattern

Given sandboxed guest code with no external access and host code can do anything such as accessing
the network. You want to allow the guest a few limited abilities, say 10, such as to connect back
to its website.

The pattern is to use a Reference Monitor. The guest makes its request to some code within
the host, called the reference monitor. The reference monitor checks if the guest is allowed to do
the requested action. Instead of changing the SFI verifier to allow all 10 things.

Decompose problem into two pieces. SFI verifier that completely sandboxes guest except one
entry point to the host. Reference monitor in host checks those 10 things. Similar to system calls.

4 SFI limitations summary

• only one guest
• return gets slower (fix with mask and memory)
• privacy not a goal

6

