
CS261: Notes on Memory Protection

Thibaud Hottelier

September 8, 2009

1 Multi-users Machines

The first security models were designed with multi-users machines in mind. The
goal was to prevent users of the same machine from interfering with each other.
The main objective was therefore isolation. Here are three possible ways to
achieve it:

• Use two machines. This trivially fulfills the goal but it is not cost efficient.

• Use one machine with an operator that takes care running and shutting
down each job. The operator, who is trusted, has to reset all states be-
tween each job. This includes persistent storage which must be erased.
This design is analogous to virtual machines and the special sessions used
by webcafés.

• Use one machine with an extra layer of indirection when addressing mem-
ory. User-space processes deal only with virtual-addresses with are trans-
lated into real (a.k.a. physical) addresses by the MMU (Memory Man-
agement Unit) for each access. The MMU is programmable only by the
kernel, which will take care of setting up the MMU translation table such
that each process can only access its own memory. The kernel updates
the MMU tables after each context-switch. Here, the O.S. is trusted. This
design requires the CPU to be able to distinguish the privileged programs
(the kernel) from the unprivileged ones (the user-space processes). On the
x86 architecture, this is done with ring levels. User-space processes can
only enter in the privileged mode through interrupts or traps (i.e. system
calls). This design is vulnerable to D.O.S. attacks as well as side channel
attacks. For instance, one process can guess how much time another pro-
cess is waiting because of cache misses. By playing with the CPU caches,
this information can then be used to derive the page access pattern.

2 Isolation with controlled Interactions

One simple design to ensure isolation between processes while still allowing
communications would be to isolate each process in a container. Containers can
communicate through messages that are passed along by the kernel. This models
micro-kernels for instance. For efficiency reasons, messages are implemented
through shared memory (i.e. zero-copy). Once a page is shared between multiple
processes, it must be mapped as a read only page for both the sender and the
receivers. This prevents:

1



1. the sender from modifying the message while the receivers read them.

2. the receivers from changing the message before the shared page is returned
exclusively to the sender.

Note that with the zero-copy mechanism, the accounting of memory usage be-
comes difficult. Who do you charge you for a message: the sender or the re-
ceivers? This opens this design to D.O.S. attacks.

2


