Smokey: A User-Based Distributed Firewall System

Rachel Rubin

Department of Computer Science
University of California, Berkeley
Berkeley, CA 94704
rrubin@cs.berkeley.edu

Abstract

Traditional intranets have a central location on the network
which easily allows the enforcement of a central security policy.
They rely on the notion that there is one central entry point
for all internal machines. Additionally, all machines that are
considered logically inside the intranet reside behind the entry
point. Increasingly this is not the case. We propose Smokey, a
system that manages and distributes a central security policy to
end clients on a network. Smokey installs a distributed firewall
on a client based on a user’s location and needs. The security
policy that it distributes is based on the credentials the user
provides and the lowest level of access needed for the user to
complete their tasks is enforced.

Keywords: Firewall, Distributed, Network Secu-
rity, User, Security ;

1 Introduction

Traditional corporate intranet security was
based on the notion of “us vs. them”. Any-
thing inside the corporation’s intranet was a
trusted friend and anything outside was treated
as a potential adversary. A firewall (a compo-
nent placed between two sections of the network
that filters traffic dictated by some security pol-
icy [loannidis et al., 2000]) was used to separate
the intranet from the rest of the world.

Today intranet topology is changing. With the
growth of extranets [Bellovin, 1999] that allow
authorized users, such as telecommuters, access
to the intranet from the outside(see figure 1) and
the increasing existence of untrusted users, such
as a corporate visitor, inside the intranet (see fig-
ure 2), the concept of a conventional firewall is
becoming antiquated.

One solution is that central security policy be
pushed to the endpoints. By allowing end clients
the ability to enforce a centralized security policy,
the intranet can essentially be spread over a large
area and travel over untrusted links. Clients can
be trusted based on providing authentication, not

Intranet

Figure 1: External single- and multi- user ma-
chines can belong logically to the intranet

on their geographical location.

However, it is difficult to distribute the security
policy since adversaries can be found anywhere
and may try to intercept it. By decentralizing the
network, an attacker has more opportunities to
break into the system. There is not one security
bottleneck that can be tightly monitored. Each
client has to be trusted to be secure so that the
network will not be infiltrated.

We propose Smokey, a system that sets up
a centralized security policy on clients in a dis-
tributed system. Smokey distributes the policy
on a per-user basis, so that each user is allotted
the amount of access that he or she can trusted
with. On a multi-user machine, Smokey can re-
trieve and enforce separate policies for users with
different needs.



Figure 2: Internal machines may have different
connectivity needs

1.1 Paper Organization

The remainder of the paper is organized as fol-
lows. Section 2 presents the related work. Sec-
tion 3 describes the design of Smokey. Section 4
discusses the current implementation of the sys-
tem. Section 5 outlines the future directions of
the project. Section 6 defines the contributions
Smokey has made to the problem.

2 Background and Related Work

2.1 Firewalls

Firewalls are a mechanism for policy con-
trol [Cheswick et al., 1994]. A traditional fire-
wall consists of several different components the
two most important being filters and gateways.
Filters block the transmission of certain classes
of traffic. Gateways provide relay services to
compensate for the effects of the filters. Fire-
walls only block banned traffic from progressing.
They provide no protection against problems with
higher-level protocols. Traditionally the firewall
has been placed as a barrier between an intranet
and the outside world. It is a barrier that all traf-
fic entering must pass through. More recently,

internal firewalls have been instituted to isolate
smaller, internal security domains.

Most of today’s firewalls operate using a rule-
based system [Bartal et al., 1999]. The rules in-
struct the firewall which inbound packets to let
pass and which to block. Similarly, it monitors
outbound traffic. The firewall’s rule-base must
be updated as new threats become known as rules
are usually only written to combat known prob-
lems.

On some systems, the rules are grouped by
roles. Roles are properties assumed by the dif-
ferent hosts in the network and define the capa-
bilities needed by that host [Yialelis et al., 1996].
By assigning rules to roles and roles to
hosts, each host is guaranteed protection of its
needs. Roles can be hierarchically assigned
with hosts inheriting rule sets from less secure
ones [Thomsen et al., 1998]. This also has the
side effect of separating the security policy from
the network topology since hosts can have differ-
ent rule sets.

2.2 Distributed Firewalls

A distributed firewall is a mechanism
that enforces a centralized rule policy but
pushes the enforcement of it toward the
edges [loannidis et al., 2000]. In current imple-
mentations of the distributed firewall, access is
controlled by machine identification. It is up to
the host machine to fetch the security policy from
a repository when an alarm is triggered. There
is no way to automatically propagate the policy
through the system or even to guarantee that a
host has to update its policy on a regular basis.
Machines are identified a via cryptographic
certificate and are allowed to join the network
based on this identification [Bellovin, 1999].
Local hosts download the security policy. When
a connection is established, the policy daemon
will screen the incoming traffic. If it is approved,
the policy daemon will inform the kernel to
proceed with the connection. If the daemon
will try to establish wvalidity through outside
sources before, if needed, ultimately denying the
connection.

2.3 Security Issues in Distributed Sys-
tems

There are several known threats to distributed
systems that need to be analyzed when design-
ing a security policy for one [Kemmerer, 1997].
Users must be verified and channels must be se-
cured [Lampson et al., 1992].

A system, in order to be considered secure, has
to provide several guarantees [Kemmerer, 1997].
These are:



e (Confidentiality: The guarantee that sensitive
information will not be disclosed to unautho-
rized recipients.

e Integrity:Data is modified in an authorized
manner.

o Awailability:Resources of the system must be
accessible to an authorized user.

3 System Design

3.1 Case Scenario

This system would be useful in a plethora of
situations. However, the key feature is that the
security policy is assigned based on the user at the
end host. Each user can load an individualized
policy.

For example, there may be a situation inside
a large company where they have noticed people
misusing the IM clients and they have a suspi-
cion that the clients are compromising their secu-
rity. The system administrators decide to block
these clients from being able to communicate with
clients outside the corporation. This can be done
with a simple addition to the firewall. However, it
might not be pertinent for the policy to block in-
ternal communication. In this case, a user-based
policy would be the best scenario to choose since
the policy could be selectively applied.

3.2 Design Overview

Smokey is a user-based distributed firewall sys-
tem for use on single- or multi- user machines.
The system is designed in three large components
which reside in user space and kernel space on the
individual system and the server base located in-
side the traditional intranet. Each of these areas
holds different sections of the system.

o User Space: The items in user space in-
clude the Login Client (see section 3.2.1), the
Policy Manager (see section 3.2.2) and the
Stored User Information (see section 3.2.3).
These components are either in need of user-
level input, like the login client, or need to
access items, such as the file system, which
is done from user space.

o Kernel Space: The items in kernel space in-
clude the Policy Handler (see section 3.2.5)
and the Firewall (see section 3.2.6). These
components are placed in the kernel because
they have need of access to the low-level pro-
cesses the kernel has control of.

e Intranet: The intranet contains components
that hold sensitive information, such as pass-
words, and needs to be in an area where it
can be closely monitored and be under tight
control. The servers(see sections 3.2.1 and
3.2.4) are located in this space.

Smokey was designed with security in mind.
It follows the basic rules of system design that
underly a secure system. It follows the prin-
ciples of separation of privilege and least privi-
lege [Saltzer and Schroeder, 1975]. The Trusted
computing base [ora, 1985] includes the kernel,
the firewall, the policy server and handler and the
policy and login servers. The servers and client
communicate using public key encryption over a
verified secure channel.

3.2.1 Login Client and Server

The login client and server are a part of a ba-
sic authentication system. The user enters his or
her name and password into the login applica-
tion. The user name and password are used to
obtain a ticket and a user identification number
(uid) which will allow the user to gain access to
the policy server. [Bryant, 1988]

3.2.2 Policy Manager

The policy manager has two different states times
that it is called to act. It is called by the login
application at login time. It is also accessed when
the user logs out.

At login time, the system is passed the ticket
and the uid by the login client. The policy man-
ager uses this uid to retrieve the user-specific rules
if they are stored on the computer (see section
3.2.3). The time the rules were last stored along
with the ticket, the uid and the type of client the
user is on are passed to the policy server (see sec-
tion 3.2.4). The policy server will then inform the
policy manager if it has the most recent version
of the security policy. If not, or if the rule base
is not on the machine since the user is new to
that client, the policy manager will request the
new rule set from the policy server and it will
be sent back in encrypted form and stored. The
policy manager will then request the key to de-
crypt the policies it has retrieved from storage.
When this is received, it will decrypt the policies
and pass them to the policy handler (see section
3.2.5) along with an install instruction.

On logout the policy handler has a much sim-
pler task It is passed the uid and it will pass that
to the policy handler with a remove instruction.
However, it must authenticate that this removal



Request Record
or Set Record
by LD

User ID

Stored R

LID,| Ticket, Machine Type, Current wersion Info

<lan' gl

Yaliclity, Meww Rules

Lser Id, Ticket

Lisg—ievel Shace

Login informgtion

Lzer Id, IPChains

¥

y [
Firenwall

Karnel Sodce

fntranat

Figure 3: Diagram of the system design

request is valid by being given a certificate of as-
surance by the application that the user has in-
deed been disconnected.

3.2.3 User-Level Storage

The user-level storage stores a user’s individual
security policy on the client. These rules are
stored in an encrypted form because if the client
is compromised they cannot be read thus allow-
ing knowledge of policies used across the system.
The uid and date they were last modified is stored
unencrypted along with the record. The key to
decrypt the rules is not stored on the machine so
they cannot be read without authentication by
the server. The rule set is stored by hashing over
the uid. Any user who has logged onto the client
and had the security policy set up for them will
have their rules stored under the assumption that
a user will make a pattern of using that machine.
Currently, there is no mechanism for removing
the stored data of users who have not appeared
on the client for a while.

The choice was made to store data on the sys-
tem in order to reduce the latency of configura-
tion. Passing large amounts of data across the
network is not trivial and would slow down the
time it will take to configure the system. Since we
anticipate the security policy will evolve slowly,
the decision was made to store the data locally.

3.2.4 Policy Server

The policy server is the central machine where the
rules are stored and delivered to clients requesting
them.

The security rules are stored in usable form so
they can be directly installed onto the client with-
out modification. When a rule is added, the sys-
tem administrator goes to the policy server and
adds the rule in this form along with the groups
of users and types of machines that it applies to.

The rules are stored in a database which is
keyed under the groups and types of machines.
When a request comes in from the policy man-
ager to see if its rules need updating the policy



server will first check the ticket and make sure
that it is valid. If it is, it will retrieve the records
that correspond to the group the uid belongs to
and the machine type that have been added since
the rule bundle has last been updated. If this
query is null, then the client has the most recent
set of rules and is informed of the fact. If not,
the server will gather all of the rules applicable
to the uid on that type of machine into a bundle
and encrypt them. Upon request from the client,
this bundle will be sent to the client to store.

Once the client is guaranteed to have the most
recent version of the rules, it will request the key
to decrypt them. The key is different for each
uid so a user will not be able to access any other
user’s rules with that key in order to preserve the
separation of privilege. The key is a combination
of the servers key and the uid. This key is sent
back to the policy manager.

3.2.5 DPolicy Handler

When the policy handler receives rules along with
an install command, it integrates the new rules
into current firewall. It receives the rules in the
correct form to be interpreted by the network
stack. It also receives the uid and tags the rules
with these so that they are only applied to net-
work traffic that is arriving destined for that user.
If the rule already exists on the firewall, the uid
tag is added to that rule to prevent duplication.

When the policy handler receives a remove
command with the uid, it will remove the uid tag
from the rules. If the rule is only tagged with the
current uid, it is removed from the firewall The
rest of the firewall is left intact.

3.2.6 Firewall

The firewall, like a traditional one, will block
transmission and receipt of certain classes of traf-
fic [Cheswick et al., 1994]. However, there are
some key changes made to Smokey’s firewall. The
firewall is not static: it has to be able to be mod-
ified on the fly while the computer is still online.
The other key change to note in the implementa-
tion of the firewall is the presence of uids. Rules,
when bound to the uids, should only be applied
to traffic bound for applications owned by that
user.

3.3 Threat Model

Smokey has several places where it could be at-
tacked. If Smokey was broken into, the attacker
could set the security rules or stop them from be-
ing applied on a machine. This is a dangerous sit-
uation. An attacker could bypass the security by

knowing what back doors are there because they
put them there! There are several locations where
Smokey is at risk. However, there are safeguards
in place to prevent the attackers from gaining con-
trol

e The attacker could pretend to be the pol-
icy server. When Smokey checks to see if the
rules it has are up to date, the attacker could
respond negatively and replace the user’s
rules with its own and be able to gain con-
trol of that user’s account on the machine.
However, Smokey uses secure authenticated
channels to prevent this.

e The attacker may try to spoof a policy man-
ager to gain access to the rules applied on
a machine. It would request the rule bun-
dle and key as if it were a new user on a
client. He or she could use their knowledge of
the security policy to break into the system
later. The tickets and authenticated chan-
nels should prevent this attack.

e A malicious user may have access to a multi-
user machine. However, since the security
policies stored on the machine are encrypted
using a unique key generated by the server,
the attacker will not be able to get the key
to decode the rules without a valid ticket.

e An attacker may gain access to a user’s ac-
count. The attacker will be able to decode
the rules that are stored since he will have a
valid ticket. Since rules are the for that user
and others in the same group on the same
type of machine, he will be able to use his
knowledge to break into those machines as
long as he can detect where they are. This
can currently only be stopped by detection
and changing the rules to plug holes. In or-
der to stop this attack, Smokey would need
to be modified to allow a uid access to the
key only once per ticket issued. (Although,
if the user has already gained access to the
account, it is unlikely he would need to ex-
amine the security policy to discover holes!)

e If an attacker gains access to the machine,
they may be able to spoof the application
and tell the policy manager that a specific
uid has logged out, thus removing the se-
curity protection from the user while they
are still connected to the network. How-
ever, since the communication between mod-
ules requires authentication, this is protected
against.



Figure 4: Flowchart of the Policy Manager. Teal boxes are a part of the Policy Manager. The access
some external functions. Green boxes are a part of the Policy Server. Grey boxes are part of the Policy

Handler.

These safeguards are put into place to maxi-
mize assurance that the security policy will not
fall into malicious hands.

4 Implementation

The current status of Smokey is that it con-
tains a fully implemented policy manager and a
skeleton-code implementation of the policy han-
dler and policy server. Smokey is written in JAVA
and runs on a Linux platform. The rules are im-
plemented in an IPChains format [Russell, 2000],
which is a toolkit that adds rules to an existing
firewall on a Linux platform.

The policy handler is implemented using sev-
eral small modules(see figure 4). All data is pri-
vate and inaccessible from the outside. The mod-
ules are divided into the following:

Main Interacts with the application. It receives
the uid and whether this is a login or logout
request. It is the only module that is able to
receive instructions from the local machine.
If the ticket is invalid, it returns the error to
the login application and exits. It calls the
module manages the rest of the modules and
makes sure they are acting correctly.

Director Manages the rest of the modules and
directs the flow of the data.

Retrieve Record Retrieves the encrypted user
data.

Check Validity Calls the policy server and
checks the validity of both the stored data
and the ticket.

Retrieve Policy Requests and receives the new
rules from the policy server and stores them
locally. It also retrieves the key which is used
to decrypt the rules and then is destroyed.

Call Kernel The unencrypted rules are passed
to the policy handler and then destroyed,

Logout Requests the policy handler remove
rules related to the uid

This division of labor into smaller
modules makes the application more se-
cure [Saltzer and Schroeder, 1975].

5 Future Work

There is still work left to be done on Smokey.

The first priority is to finish the implementa-
tion. Once there is a fully working prototype, it
would be useful to deploy Smokey on a network
and test it in a real environment.

There are several ways that Smokey could be
changed that would add functionality. The clients
need to have a way to report any security breaches
back to the server. This way any breaches or at-
tempted breaches could be dealt with by a system
administrator. Another step would be to add the
functionality to the system that the policies could
self-configure based on these reports. They could
be configured into the format for the rules and
added to the database. The could be applied to
other groups and types of machines that are sim-
ilar to the one where the breach was noticed.



Currently, there is no way for the system to
distribute new rules to clients that are already
running. If a rule is added it may be because
of a potentially harmful system breach which
needs to be patched immediately. However, rule
sets currently can only be modified on login.
Smokey could implement a way to propagate rules
throughout the system as they are added by keep-
ing track of who is currently running that needs
the patch and sending an update to the manager
which would install it.

Several organizations may have access to a ma-
chine running outside the intranet. It would be
useful to allow a secure multi-organization sce-
nario.

Finally, it would be interesting to test Smokey
on other types of security policies. It would be
useful to be able to propagate any type of policy
throughout the network and have the clients be
able to adjust.

6 Conclusions

Smokey is the prototype of a system that dis-
tributes a centralized security policy to clients.
Smokey can set individual security policies based
on the user, location and type of the machine.
This customability maximizes the usefulness of
the security system since it can be geared toward
the current situation. Although firewalls have
come under criticism as not the most useful se-
curity policy, Smokey can be generalized to the
distribution of other policies. Smokey has shown
how to centrally manage and securely dynami-
cally distribute a security policy,

References

[ora, 1985] (1985). The department of defense
trusted computer system evaluation criteria.
Technical report.

[Bartal et al., 1999] Bartal, Y., Mayer, A. J.,
Nissim, K., and Wool, A. (1999). Firmato: A
novel firewall management toolkit. In IFEFE

Symposium on Security and Privacy, pages 17—
31.

[Bellovin, 1999] Bellovin, S. M. (1999). Dis-
tributed firewalls. ;login:, 24(Security).

[Bryant, 1988] Bryant, B. (1988). Designing and
authentication system: A dialogue in four
scenes.

[Cheswick et al., 1994] Cheswick, W. R,
Bellovin, S. M., and Rubin, A. D. (1994).

Firewalls and Internet Security: Repelling the
Wily Hacker. Addison-Wesley.

[loannidis et al., 2000] Ioannidis, S., Keromytis,
A. D, Bellovin, S. M., and Smith, J. M. (2000).
Implementing a distributed firewall. In ACM
Conference on Computer and Communications
Security, pages 190-199.

[Kemmerer, 1997] Kemmerer, R. A. (1997). Se-
curity issues in distributed software. In Pro-
ceedings of the 6th Furopean conference held
jointly with the 5th ACM SIGSOFT interna-
tional symposium on Foundations of software
engineering, pages 52—-59. Springer-Verlag New
York, Inc.

[Lampson et al., 1992] Lampson, B., Abadi, M.,
Burrows, M., and Wobber, E. (1992). Authen-
tication in distributed systems: Theory and
practice. ACM Transactions on Computer Sys-
tems, 10(4):265-310.

[Russell, 2000] Russell, R.
(2000). Linux ipchains.
http://www.netfilter.org/ipchains/HOWTO-
1.html.

[Saltzer and Schroeder, 1975] Saltzer, J. and
Schroeder, M. (1975). The protection of infor-

mation in computer systems. In Proceedings
of the IEEFE, pages 1278— 1308.

[Thomsen et al., 1998] Thomsen, D., O’Brien,
D., and Bogle, J. (1998). Role based access con-
trol framework for network enterprises. In 14th
Annual Computer Security Application Confer-
ence.

[Yialelis et al., 1996] Yialelis, N., Lupu, E., and
Sloman, M. (1996). Role based security for dis-
tributed object systems.



