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ABSTRACT
The Maté virtual machine is a powerful mechanism for sen-
sor networks, providing execution safety, energy-efficiency
through concise programs, and rapid network reprogram-
ming through viral code. Viral code propagation has obvi-
ous security issues; a single nefarious program can quickly
take over a network, while program conciseness exposes pos-
sible weaknesses to cryptanalysis and mote failure means
that physical mote compromises can easily go undetected.
Data replay attacks can disrupt the results from a network.

We present the security mechanisms we have incorporated
into Maté to address these problems. We discuss the mech-
anisms with and without the possibility of mote compro-
mise. We show how the disparate encrypt/decrypt difficulty
of RSA can be used for public-key digital signatures, how
cut-and-paste attacks can be prevented through version vec-
tors, and data replay can be suppressed. These mechanisms
suggest what roles symmetric and asymmetric cryptogra-
phy can play in a sensor network, indicating what hardware
primitives are needed for a sensor network to be secure.

1. INTRODUCTION
Wireless sensor networks pose novel problems in system

management and programming. Networks of hundreds or
thousands of nodes, limited in energy and individual re-
sources, must be reprogrammable in response to changing
needs. Limited energy budgets require concise programs,
which can be written for a high-level virtual machine. Au-
tonomous viral code propagation can make installing pro-
grams simple and rapid. Networks may require security in
the presence of a slew of attacks, including snooping, mote
compromise, partitioning, failure, traffic injection, and traf-
fic control. Decentralized programming requires distributed
and in-network security mechanisms as opposed to central-
ized ones.

In this work, we consider Maté, a tiny virtual machine de-
signed for TinyOS sensor networks [6, 13]. High level Maté
bytecodes allow complete sensing programs to be written in a
few bytes; sending a packet is a single instruction. Maté pro-
grams are broken up into small capsules of instructions that
virally propagate through a network using version numbers.
Introducing a single mote running a new Maté program will
cause the program to self-replicate through a network until
the entire network is running the new program.

This viral code propagation makes reprogramming very
simple, but raises clear security issues: a single nefarious
code capsule can take over a network. Additionally, Maté
can run capsules in response to data packets; an adversary

can, in essence, execute Maté code by sending data. A spec-
trum of security requirements emerges, ranging from open
operation to program integrity to complete code and data
integrity as well as confidentiality.

Current TinyOS sensor networks use the mica platform,
which has a 4MHz 8-bit microcontroller as a CPU, 4 KB of
RAM, 128 KB of program memory, a 40 Kbit radio and 512
KB of non-volatile storage (EEPROM). The microcontroller
has several security features. A fuse bit can be set that dis-
ables reading program memory from the chip; clearing the
fuse bit erases the program memory. Also, the EEPROM
is cleared when a new program is uploaded into program
memory. These two features mean that an adversary can-
not read data off the chip with normal software tools [1],
making symmetric key cryptography very appealing. This
is the basis of TinySec, a secure data-link layer implemented
in TinyOS [8]. A network-shared secret key can be included
in the network’s program; even taking physical control of a
mote won’t allow an adversary to read the key using soft-
ware.

However, a determined adversary could use hardware tools
(examining the chip itself) or instrumentation (power anal-
ysis) to gain information about a running program [11, 12,
14]; additionally, there is no assurance that these hardware
security mechanisms will be present in future mote designs.
Therefore, just as with security requirements, one must con-
sider a spectrum of adversary determination.

We present the security mechanisms we have introduced
to Maté to address with these spectra of adversary determi-
nation and security requirements. Some (such as public-key
cryptography) are currently unfeasible to fully implement
in software, but we have implemented limited versions (e.g.
small keys). These limitations indicate directions for future
mote architectures if security is to be a high-priority require-
ment.

This work has several contributions. First, we define a hi-
erarchy of security requirements for Maté networks. Second,
we categorize the classes of attacks that could be launched
against a Maté network. Third, we identify characteristics
of the VM that could be weaknesses to cryptanalytic at-
tacks. Fourth, we present mechanisms that meet the secu-
rity requirements in the presence of the identified attacks
and weaknesses.

Section 2 provides a broad overview of sensor networks
and the aspects of Maté that are pertinent to discussing its
security. In Section 3, we discuss our security analysis of
Maté, categorizing VM security requirements, attacks, and
weaknesses. Section 4 presents the security mechanisms we
have introduced to Maté.



2. SENSOR NETWORKS
The progression of Moore’s Law has led to the design and

manufacture of small sensing computers that can communi-
cate with one another over a wireless network [6]. Research
and industry indicate that motes will be used in networks of
hundreds, thousands, or more [7][5][22].

Sensor networks are distinct from traditional computing
domains. Their design assumes being embedded in com-
mon environments (e.g., a corn field, a bathroom), instead of
dedicated ones (e.g., a server room, an office). Mean time to
failure combined with large numbers leads to routine failure;
a network must be easy to repopulate without interrupting
operation. Unlike infrastructure systems in controlled server
room, the embedded nature of motes makes them physically
vulnerable; an adversary can just pick one up and walk away
with it for later analysis.

Energy is the most critical resource in a sensor network.
One can easily recharge a laptop or a handheld; recharging
thousands of motes (or even finding all of them!) is much
more difficult. Because of its power requirements, commu-
nication in sensor networks is more precious than in other
computing domains; sending a single bit of data can consume
the energy of executing a thousand instructions.

2.1 TinyOS
TinyOS is an operating system designed specifically for

use in sensor networks [6]. Combined with a family of wire-
less sensor devices, TinyOS is currently used as a research
platform by over 70 groups worldwide. TinyOS has a simple
event-based concurrency model. This model TinyOS allows
high parallelism with low overhead, in contrast to a thread-
based concurrency model in which thread stacks consume
precious memory while blocking on a contended service.

The top-level TinyOS packet abstraction is an Active Mes-
sage [21]. The characteristics of this abstraction are impor-
tant because they define the capabilities of systems built on
top of it. AM packets are an unreliable data link protocol;
the TinyOS networking stack handles media access control
and single hop communication between motes. Higher layer
protocols (e.g. network or transport) are built on top of the
AM interface.

AM packets can be sent to a specific mote (addressed with
a 16 bit ID) or to a broadcast address ( 0xffff). TinyOS
provides a namespace for up to 256 types of Active Messages,
each of which can each be associated with a different software
handler. AM types allow multiple network or data protocols
to operate concurrently without conflict.

TinySec is an Active Messages implementation designed
for security; it provides cryptographic packet confidentiality
and integrity. TinySec uses the RC4 block cipher over the
data region of the packet, with a 16-bit initialization vec-
tor sent in cleartext to provide confidentiality for repeated
messages. The destination address, AM type, and packet
length field as also sent in cleartext. The RC4 symmetric
key is installed on each mote before deploying the network
and resides in program memory. Integrity is provided by a
full packet MAC, which uses a different key than data en-
cryption.

2.2 Maté
Maté is a bytecode interpreter that runs on TinyOS. Code

is broken in capsules of 24 instructions, each of which is a
single byte long; larger programs can be composed of mul-

tiple capsules. In addition to bytecodes, capsules contain
identifying and version information. There are three execu-
tion contexts that can run concurrently at instruction gran-
ularity. Maté capsules can forward themselves through a
network; version numbers are used to determine if a heard
capsule should be installed. Maté provides both a built-in
ad-hoc routing algorithm (the send instruction) as well as
mechanisms for writing new ones (the sendr instruction).

Initial versions of Maté had an explicit capsule forward-
ing instruction forw; experimental results showed this to be
problematic. Current versions of Maté use a combination
push/pull system inspired by global index work on Plan-
etP [4].

Each mote periodically sends out a version vector packet,
containing the version numbers of the capsules installed.
The send rate decays linearly over time; the period increases
by one second on each send. If a mote hears a vector with an
older version number than what it has, it starts transmitting
the newer version of the capsule, sending it three times. If a
mote hears a vector with a newer version number than what
it has, it resets its version vector send period; the intention
is that the mote with the newer capsule will hear the vector
and start sending the code. Maté resets its version vector
send period whenever it installs a new capsule.

Our initial experiments show this code forwarding mech-
anism to be much more efficient and effective than explicit
forwarding; a stable network can enter a quiescent state in
which version vectors are only send every few minutes. How-
ever, as soon as a new capsule enters the system, resetting
the vector send period causes it to very quickly propagate
through the entire network. Similarly, because Maté never
stops sending version vectors, a disconnected mote that re-
connects will be able to learn about and request code up-
dates.

3. MATÉ SECURITY ANALYSIS
Maté’s viral code propagation makes installing a new pro-

gram simple and rapid; this functionality, however, can be
used by an adversary to take control of a network just as
easily and quickly. This network-centric programming poses
several specific security threats to a network. Maté has very
specific traffic and data patterns that can be used by an ad-
versary for network analysis to introduce adversarial code.
Sensor networks have a wide range of uses, and a correspond-
ingly wide range of security requirements. By considering
these three issues, we can then evaluate security mechanisms
against them.

3.1 Requirements
Maté networks deployed for different purposes can have

different security requirements. Almost any security mech-
anism has some cost associated with it, whether it be com-
munication, memory, or CPU cycles; in the end, they cost
energy, reducing the lifetime of a network. Always forcing
every network to have the highest degree of security is there-
fore wasteful and unreasonable. A home garden soil moisture
monitoring network has very different requirements than a
home security system or a military network. We have identi-
fied five possible security requirements that a Maté network
might have:

• Code integrity: in the scope of this paper, code in-
tegrity refers to end-to-end capsule and program in-



tegrity from the PC base station to a node in the net-
work; motes can verify that a capsule originated at
the PC and has not been since modified. One of the
strengths of Maté is being able to quickly reprogram
a network; making sure that capsules aren’t corrupted
or falsified prevents an adversary from installing his
own program. TinySec and Active Messages provide
packet but not end-to-end integrity. Capsule integrity
makes no promises about the combination of capsules;
an adversary could suppress the propagation certain
capsules, resulting in an invalid combination and dis-
rupting operation. Program integrity is the ability for
a mote to know what combinations of capsules forming
a program are valid.

• Code confidentiality: if an adversary knows the pro-
gram running on the network, he can more easily cir-
cumvent or disrupt its purpose. Code integrity can
prevent an adversary from taking control of a network,
but code confidentiality can make it more difficult to
counter the network’s purpose.

• Data integrity/confidentiality: data integrity means
that a mote can verify a data packet was generated
from another Maté node in the network. While code
confidentiality can make it more difficult for an adver-
sary to determine the current Maté program, analyzing
data can often be just as effective as looking at code.
Additionally, even in the absence of an adversary try-
ing to control or circumvent a network, data may be
sensitive; even innocuous data as temperature or light
readings could tell a burglar when residents are home
and awake.

• Communication Semantics often, for a program
to run correctly, certain implicit semantics must hold
true. Data integrity can provide guarantees that a
piece of data was generated by the network, but not
when. A simple way to disrupt the intended purpose
of a program can be to flood the network with replayed
data packets. For the program to run correctly, it must
be able to provide guarantees on the expected commu-
nication semantics (e.g., only receiving a packet once).
We define communication semantics as a Maté data
packet being idempotent.

• Physical Compromise: lastly, some networks might
need to be resistant to physical mote compromise. In a
home garden, this is hardly a problem, but in a home
alarm system it can be. Physical mote compromise is
the ability for an adversary to read the entire state
of the mote and reprogram it freely. While current
mote hardware makes reading state difficult, it is not
impossible. We assume that only a small number of
nodes can be compromised; large scale compromise is
beyond the scope of this work. We discuss this further
in Section 4.1.

3.2 Threats
Initial versions of Maté have several security threats:

• Adversarial capsules are a clear threat to a Maté
network; a single instance of an adversarial capsule
will virally spread through the network. Once pro-
grammed, the network can be made reprogramming-
resistant (but not nonprogrammable) by saturating

the network with packets, while simultaneously eras-
ing stored data, consuming energy, and preventing op-
eration. Capsule version numbers mean that the net-
work can normally be reprogrammed, but an adversary
could easily choose the highest version number, render-
ing the network reprogrammable.

• Traffic control allows an adversary to decide what
program runs in the network. In the extreme case,
putting the base station in a Faraday cage allows an
adversary to completely control all traffic injected into
and read from the network (by putting an adversary
node in the cage). This can be used to control which
capsules are installed into the network, allowing cut-
and-paste attacks with combinations of capsules that
result in an adversarial program.

• Data fabrication can be used to control a network. If
Maté uses its receive handler, an adversary can cause
the handler to execute on chosen or replayed data pack-
ets. For example, if the receive handler were used
to configure constants such as sampling periods, data
packets could cause the network to sample at useless
or unmaintainable rates. Additionally, fabricated data
can invalidate the results being read from the network,
rendering it useless.

• Data replay can also be used in a similar fashion to
data fabrication, although n a less precise fashion (the
adversary only has the set of previously transmitted
packets to use, as opposed to any packet).

3.3 Maté Cryptanalysis Weaknesses
Maté’s viral code propagation has very distinctive network

traffic patterns and characteristics that could possibly be
utilized by an adversary in cryptanalysis. These include:

• Repetition: A given capsule can be transmitted
many times in a network; each mote transmitting the
capsule sends an identical packet. Adversaries can use
this repetition in cryptanalysis efforts.

• Weak cleartext: The AM and capsule headers in a
capsule packet are very weak clear text; they comprise
a tiny slice of the possible binary space. For exam-
ple, the AM destination, AM type, and packet length
are fixed, the capsule type is one of a narrow set of
values, version numbers are monotonically increasing
values (which could naively be merely an increment of
a previous one), and the capsule options field has very
low entropy, and code is also lower than perfect en-
tropy. An adversary could utilize these characteristics
to launch cryptanalytic attacks.

• Traffic rates: By analyzing the rate of traffic being
sent, an adversary can learn facts about its contents.
For example, if motes in the network change their net-
work behavior in a wave-like pattern, one can intuit
that a new capsule is possibly propagating through the
network. Similarly, by partitioning the network, an ad-
versary can determine if a packet is sent at a standard
interval independent of other traffic (a timer), or in
response to receiving a packet (ad-hoc routing).



3.4 TinySec and Symmetric Keys
TinySec uses symmetric key cryptography to provide mes-

sage integrity and confidentiality. Randomized initialization
vectors provide a limited form of confidentiality for repeated
messages. The RC5 CBC used is very resistant to cryptanal-
ysis [20, 10, 2, 19]. As not all of a packet (e.g. AM type) is
encrypted in TinySec, however, an adversary can easily de-
termine which packets are capsules. TinySec packets can be
used in cut-and-paste attacks against Maté to install faulty
or invalid programs.

A single shared key in the network provides relatively in-
expensive (in terms of CPU and storage) message confiden-
tiality and integrity. However, a very determined adversary
(such as in a wartime situation) can extract the key using
a variety of indirect techniques, including determining CPU
behavior from power traces[11, 12, 14]. Alternatively, the
adversary can just take the chip to a suitably equipped fab-
rication facility to extract the key from memory. Both of
these assume that the memory is hardware-protected; while
this is currently true, there is no assurance it will continue to
be so on future platforms. In the absence of hardware access
controls to memory, leaning the symmetric key is trivial if
one can physically access a mote.

4. DESIGN
We present several mechanisms that Maté can use to meet

a user’s security requirements. We have implemented some
of them, while others are future possible inclusions; imple-
mentation has been postponed due to the significant changes
they could bring to the VM programming model.

4.1 Trusted Computing Base
In all of our security scenarios, we consider the PC base

station part of the TCB. Compromise of the PC would al-
low an adversary to freely reprogram the network, erase or
modify data, and in all respects make the network useless.

If the security requirements of a network include resistance
to physical mote compromise, then individual motes cannot
be considered part of the TCB. While a network can be
resistant to a small number of motes being compromised,
large compromises are clearly difficult to counter. If every
mote in the network is invisibly operating for the adversary
(physical compromise assumes invisibility), there is little an
administrator can do.

If the network is not required to be resistant to physi-
cal compromise, than motes programmed by the network
administrator can be considered part of the TCB; foreign
motes, however, are not.

4.2 TinySec
In the absence of physical mote or key compromise, Tiny-

Sec can provide code and data confidentiality as well as ac-
ceptable degrees of data integrity. By itself, it cannot pro-
vide complete code integrity, as a capsule may be corrupted
in memory on a mote. TinySec cannot provide program in-
tegrity; an adversary could still use cut and paste attacks.

4.3 Code Signing
Code integrity requires end-to-end capsule integrity, which

can be achieved by including a cryptographic hash of the
capsule. If the hash is plaintext, however, then code in-
tegrity requires code confidentiality and resistance to physi-
cal compromise. Otherwise, knowledge of the hash function

could allow an adversary to generate his own capsules and
sign them.

Maté’s viral code propagation means that if an adversary
can install a capsule on a single uncompromised mote, it will
spread through the entire network. To protect the network
from this, capsules must be digitally signed by a trusted
PC. Compromising motes in the network cannot compromise
the signing process; asymmetric cryptography must be used.
Motes, however, must be able to verify the signature. A
network is deployed with a public key. When a PC generates
a capsule, it signs it using a private key. Before a mote
installs a capsule, it checks the signature. AM-level headers
are not signed; as long as different AM types use different
signatures, cut and paste attacks cannot be used. We use
the bottom 64 bits of an MD5 hash in the signature.

We present two possible implementations, one unpromis-
ing and one promising. Public key cryptography can be used
to sign code capsules, using RSA with carefully selected con-
stants to minimize mote-side computation. Key sizes make
this approach unfeasible. We therefore examine variants of
BiBa [16] signing as a low-overhead, concise alternative.

4.3.1 Public Key Signing
Public key operations are expensive in storage and CPU.

We can use the symmetry of RSA to make decryption the
easier of the two operations; the mote can use an e of 3
or 17, making decryption comprising a few multiplications
and a modulus. Additionally, the mote only needs to check
the signature if it thinks it would use the capsule or version
vector (based on its contents). This does allow an adversary
to launch an attack by sending bogus high version number
capsules, whose signatures a mote will keep checking. A
realistic high-security public key (2048 bits) would consume
just under ten percent of a current mote’s memory resources;
while a heavy requirement, it is impossible.

Far more problematic, however, is the required packet size;
signatures are as long as the public key, greatly outweighing
the size of the data. Additionally, to use a 2048 bit key,
however, the clear text must be of suitable length for the
modulus. Using an e of 3 would require a plaintext of 750
bits (95 bytes). A larger e is preferable, but can increase the
computational requirements for the mote.

Using PKC, capsule integrity can be provided in the pres-
ence of in-memory capsule corruption and physically com-
promised motes. However, its memory and communication
requirements are unfeasible. We have implemented a very
limited version of RSA (a 64-bit key) as a proof of concept
for this technique, but do not plan to extend it further un-
less the bandwidth provided by sensor networks increases
significantly.

4.3.2 BiBa Signing
BiBa is a signature mechanism whose signatures that are

very easy to verify [16]. A signature consists of a set of
values Vi (e.g. 64-bit numbers) and a counter. To verify the
signature, the verifier takes a hash of the message, Hm, and
adds the counter. The verifier computes the hash of each Vi

using Hm as an additional input. The signature is valid if
each Vi hashes to the same value. BiBa has several variants
and options (such as having multiple sets, each which hashes
to a value), which we do not discuss for sake of brevity [15,
18].

The values V0 . . . Vn are the private key; the verifier has a



public key that allows easy verification that Vi is authentic.
As a sender reveals more Vi, an adversary has a greater
chance of being able to forge a signature. This raises the
problem of key distribution.

4.3.2.1 Private Key BiBa.
We can circumvent the key distribution problem by using a

symmetric key. Each verifier has the full set of signing values;
instead of including values in a signature, the sender sends
which signing value is being used (an index into an array).
In addition to not revealing the values to an adversary, this
allows a more concise representation; 64-bit signing values
can be represented as 10-bit indexes.

The BiBa private-key signature then takes this form,
adding five bytes to a message:

typedef struct BombillaBiBaSignature {

uint32_t indexes;

uint8_t counter;

} BombillaBiBaSignature;

The 1024 64-bit signing values are installed on a mote
at programming time, and are stored in program memory.
The implementation uses an MD4 hash function, and uses
a 3-way collision; the three ten bit indexes are stored in
the 32 bit field. Using a symmetric key allows a PC to
reprogram the network many times safely. However, it makes
the network vulnerable to physical compromise.

4.3.2.2 BiBa with One-way Signing Value Chains.
This is currently unimplemented. -pal
Physical compromise can be countered by using the stan-

dard BiBa scheme: instead of storing the signing values, the
mote stores value authenticators, the hash results of sign-
ing values. Using a trapdoor function prevents an adversary
from deducing signing values. However, by revealing signing
values in plaintext, a sender allows an adversary to generate
a dictionary of values that can then be used to forge sig-
natures. Perrig et al. comment that BiBa’s security holds
as long as less than roughly 10% of the values are revealed
(given setting the other constants properly). Additionally,
the sender must transmit entire values instead of indexes
(i.e., 64 instead of 10 bits), greatly increasing the signature
overhead.

However, using one-way chains, BiBa can be implemented
using a public key in a manner that doesn’t require period-
ically distributing a new public key. Each signing value can
only be used once; a signature contains the counter and two
signing values, each with a generation number. The gen-
eration number denotes which element in a one-way chain
the value represents. The public key begins as the set of 0-
generation values; given a signing value, the mote can com-
pute the hash chain to the public, known value to verify it.
A mote only accepts signing values of later generations that
hash forward to the public key. Because each signing value
can only be used once, using two signing values provides
adequate security.

This forward-chaining does have one vulnerability; an ad-
versary can use a traffic control attack to separate a set
of motes from the network, listen for a number of signing
values, then sign its own adversarial capsule, infecting the
separate motes. The rest of the network, however, will not
accept the signature, as it will use signing values that have
already expired. Of course, an adversary could separate the

entire network (by quarantining the base station); however,
if the administrator is unaware that the past n reprogram-
mings haven’t propagated to the network, that’s a wholly
different problem.

Assuming chains of maximum length 216, forward-chaining
BiBa would be a 24-byte overhead on each packet; 16 bytes
for the signing values, four bytes for their generations, three
bytes (20 bits) to state which signing values they are, and
one byte for the counter. Because the signing values are
invalidated as soon as they are revealed, the best chance
an adversary would have to use them would be to try to use
them on a distant part of the network before they propagate.
More signing values could be added to improve security, at
the cost of roughly 11 bytes per value.

4.4 Program Vectors
If an adversary has complete control over traffic in the net-

work, code integrity cannot be provided by merely signing
capsules. The adversary can control which capsules make
their way into the network, constructing combinations that
provide incorrect data (e.g., by not letting a new data fil-
ter be installed). The adversary can also use cut-and-paste
attacks to generate possibly adversarial programs.

Maté already has capsule version vectors for code propa-
gation. By making a small modification to the vector packet
format, we added support for program vectors, which
specify valid capsule combinations. These version vectors
originate at a PC and are signed just as capsules are. As all
version numbers are monotonically increasing, each vector
field must be monotonically increasing as well (otherwise, it
could become impossible to reprogram a network as the re-
quired capsule will not be installed). When a mote receives
a new program vector, it stores it and continues to run the
current program. As soon as it hears one of the capsules
required for the new program, it halts execution until it has
all of them.

4.5 Data Clusters
This is currently unimplemented. -pal
Capsules originate from a single point, a powerful PC,

allowing the use of public key cryptography to provide in-
tegrity. In a sensor network, however, data originates from
every node and must be received by other nodes. Even if
data integrity and confidentiality are provided, an adversary
can disrupt execution of the network through replay attacks.

Data packets sent using Maté’s built-in ad-hoc routing are
not considered by the VM; once the instruction is issued, the
ad-hoc subsystem routes the packet to a base station. Re-
play suppression and data inconsistencies can therefore be
considered in a centralized place. From Maté’s perspective,
the difficult issue is not there packets, instead VM data pack-
ets that trigger receive handlers, as they require distributed
countermeasures.

µTESLA implements authenticated broadcast using per-
epoch keys and a loose form of time synchronization [17].
However, this mechanism only protects a static network in
which key sequences are securely bootstrapped; otherwise,
one could save the key/data sequence from one region of the
network and replay it in another.

Communication semantics requires that Maté data pack-
ets be idempotent. Capsule idempotency is implemented
through version numbers. A global version number is unfea-
sible for a sensor network, as it would require a centralized



mechanism that would be fragile to traffic control attacks.
To protect Maté from data replay, we use a fixed-size

neighbor cache and sequence numbers. Every Maté data
packet (sent with the send capsule) has the receive capsule
version number in it. The neighbor cache is initialized when-
ever a new receive capsule is installed; the mote installs the
first eight motes it hears transmit a message with the cur-
rent receive version. It keeps a 32-bit sequence number for
each mote in the cache, and only accepts packets if they
are both the current receive handler and have an increasing
sequence number. Assuming nonchargeable battery power,
the number of packets a mote can send in its lifetime is well
below 232, so there is no chance that the sequence number
will wrap around.

Use of dynamic data neighbor clusters provides data re-
play protection for mobile networks (although it requires a
new capsule to generate new clusters). The rate of mobil-
ity is constrained, however, by the rate of propagation; it
cannot support high mobility in which clusters change very
frequently. Additionally, the formation of clusters requires
feedback for any sort of directly addressed packet; it is possi-
ble that mote A has mote B in its cluster, but not vice-versa.
Mote B will therefore never receive packets from mote A.

Data clusters do have vulnerabilities. For example, an ad-
versary can use a one-for-one replay of data packets from
a mote in different areas of the network; many nodes could
place that mote in their neighbor caches, making the logical
topology have a much greater reach than the physical topol-
ogy. This is similar to a combination of the wormhole and
Sybil attacks presented by Karlof et al. [9], except that it
disrupts data instead of routing. The problem posed by this
attack is that it can be entirely indistinguishable from the
very spotty and unpredictable behavior of a real-world net-
work. The one warning sign could be if a mote hears its own
packet replayed, but countermeasures to this attack cannot
assume this will be the case.

5. EVALUATION
We describe how each of the security requirements out-

lined in Section 3.1 can be satisfied with the mechanisms we
have proposed. Physical compromise makes some goals im-
possible, specifically confidentiality; for example, if a mote’s
memory can be read, achieving code confidentiality is prob-
lematic. Maté receive capsule data confidentiality is simi-
larly difficult to provide, although PKC can be used for cen-
trally collected data. We then consider the overhead these
mechanisms pose.

5.1 Requirements
We consider the possible security requirements in turn,

with physical compromise being considered as an additional
circumstance for each of the others.

5.1.1 Code Integrity
Code integrity can be obtained by adding a MAC to each

capsule. Unless an adversary learns the MAC key, he cannot
generate new capsules. Packet-level (e.g. TinySec) MACs
do not protect the network from internal corruption. In
the presence of physical compromise, the key to generate a
MAC cannot reside on a mote. Using public key signatures
provides capsule integrity even in the presence of mote com-
promise, and signed program vectors prevent cut-and-paste
attacks. In combination, they provide code integrity.

5.1.2 Code Confidentiality
Code confidentiality can be provided by TinySec. A mote

must be able to access the plaintext of the code in order to
execute it; for this reason, code confidentiality is unfeasible
in the presence of mote compromise mechanisms.

5.1.3 Data Integrity/Confidentiality
Data integrity and confidentiality can be provided by

TinySec’s MAC. In the presence of mote compromise, in-
tegrity and confidentiality can be provided for routed data
with PKC, but Maté data packets are vulnerable for the
same reasons as code integrity.

5.1.4 Communication Semantics
Communication semantics require that a mote only receive

a sent Maté packet once. By defining a logical topology, the
motes in a Maté network can keep state on each of their
neighbors, making data packets idempotent. The idempo-
tency of routed data packets can be handled by the central
collection PC, with its filtering and processing capabilities.
In Maté data packets, idempotency is not compromised by
the presence of compromised nodes. However, if the network
cannot provide data integrity, than an adversary can inject
new packets into the system, disrupting results.

5.2 Overhead
We present the overhead of each of the proposed mecha-

nisms.

5.2.1 Code Signing:
Code signing poses both a message length and a CPU

overhead (for signature verification). Private-key BiBa im-
poses a five byte overhead on a packet. Assuming chains
of maximum length 216, forward-chaining BiBa would be a
24-byte overhead on each packet; 16 bytes for the signing
values, four bytes for their generations, three bytes (20 bits)
to state which signing values they are, and one byte for the
counter. Because the signing values are invalidated as soon
as they are revealed, the best chance an adversary would
have to use them would be to try to use them on a distant
part of the network before they propagate. More signing
values could be added to improve security, at the cost of
roughly 11 bytes per value.

However, the RAM constraints on a mote make a strong
version of BiBa impossible to efficiently implement; the key
(public or private ) is too large to store in RAM. Instead, it
must reside on the EEPROM; reading signing values from
the EEPROM would greatly increase the time it takes to ver-
ify a signature. A careful analysis of the threat probabilities
(based on the one-use value and timing vulnerability) could
allow the algorithm to use fewer than the recommended 1024
signing values, reducing the memory requirements.

5.2.2 Program Vectors:
Program vectors are sent using the same timing finite state

machine as version vectors. However, unlike version vectors,
whose timer is reset for each new capsule, program vectors
only reset their timer once per combination of capsules. If a
program runs in a Maté network for eight hours, the timing
decay will cause it to send 241 program vectors, an average
of one every two minutes.

5.2.3 Data Clusters:



Implementing data clusters would require a small amount
of storage for the local neighborhood, on the order of fifty
bytes. More significant, however, are the limitations it cre-
ates on the operation of a network; the topology of the net-
work is limited to degree eight.

6. DISCUSSION
The primary overhead in the Maté security mechanisms is

the increased packet lengths; given the energy cost of com-
munication, this is a high cost. We have not made a detailed
analysis of the required minimum sizes of these security-
related fields, instead implementing them at safely large
sizes. The amount of data included is an obvious param-
eter than can be tuned between requirements of efficiency
and security.

This concern stems from a characteristic of sensor net-
works that distinguishes them from other domains. In mo-
bile systems, for example, omnipresent public key cryptog-
raphy is unfeasible due to the computational requirements,
while computing hashes and symmetric cryptography is are
readily available. In contrast, in a sensor network these lat-
ter mechanisms are limited not by their CPU requirements
as much as their data requirements. Adding a four byte hash
onto every message is a significant cost. However, many of
the vulnerabilities requiring large hash sizes in more pow-
erful systems, such as birthday attacks, are not feasible in
sensor networks due to their energy limitations; motes can’t
receive the same volume of packets.

The major problem none of our mechanisms can solve is
confidentiality in the presence of compromised nodes. Ad-
ditionally, while data clusters bound the damage that data
replay and compromised nodes can cause, a network can still
be disrupted. Unfortunately, prior work in distributed sys-
tem fault tolerance is far too communication-heavy for sen-
sor networks, even when intended to be practical [3]. This
suggests that perhaps compromise detection is preferable to
compromise prevention.

The many-to-one relationship between a base station PC
and sensor network motes facilitates the utilization of pub-
lic key cryptography for communication between the two
domains. Currently, the CPU and storage requirements of
public key encryption make it unfeasible for reasonably sized
keys. Small data payloads also pose a problem for PKC op-
erations; for example, signatures must be as long as the key
(≈300 bytes)..

7. CONCLUSION
Sensor networks can be used in a wide range of domains,

with differing security requirements. Maté provides a rapid
and autonomous programming interface to a network, but
raises significant security vulnerabilities. TinySec can be
used to solve some of these vulnerabilities, but others re-
quire mechanisms in Maté itself. TinySec is not always ap-
plicable; there are use cases in which its confidentiality is not
necessary, but end-to-end signing is a core requisite for Maté
capsules regardless of network security. Code signing in the
presence of mote compromise requires some form of public-
key signing; while some current public key signing systems
such as BiBa are feasible, they have require a lot of storage.
Efficient public-key signing is an important future research
goal for Maté networks.
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